
M A N N I N G

Vaibhav Verdhan
Foreword by Ravi Gopalakrishnan

Practical unsupervised machine learning

Data Without Labels

2 EPILOGUE

Data science project steps

Data

input

Survey

Data

preprocessing

Model

dataset

Archetype segmentation

Identify clusters within

data

Bayesian belief networks

Identify variable change

implication

Text mining using

cosine-similarity

Identify key factors

in user experience

Business outcome

• Extracted segments

 based on customer

 buying habits

• Variable dependency

 graphs and their

 implication on sales

C5

C4

C2

C1

C3

The Complete Machine Learning Modeling Process

Praise for Data Without Labels

A must read for learning unsupervised learning and GenAI.

 —Khuram Pervez, EGA

A practical guide for beginners as well as practitioners.

 —Amaresh Rajasekharan, IBM

The absolute resource for all important questions about data without labels.

—Arne Peter Raulf, German Aerospace Center

Comprehensive and detailed guide to mastering unsupervised learning and generative AI.

—Krishna Chaitanya Anipindi, Hexagon

Explores new ways to uncover patterns, generate insights, and push machine learning beyond

labeled data.

—Stephen Tobayiwa, Unite Services GmbH

A concise guide covering both theory and implementation.

 —Deepika Sinha, Head of AI/ML/Gen AI

ii

Data Without Labels
PRACTICAL UNSUPERVISED MACHINE LEARNING

VAIBHAV VERDHAN

FOREWORD BY RAVI GOPALAKRISHNAN

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

Manning Publications Co. Development editor: Ian Hough
20 Baldwin Road Technical editor: Davide Dev Vento
PO Box 761 Review editor: Kishor Rit
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copy editor: Kari Lucke
Proofreader: Mike Beady

Technical proofreader: Frances Buontempo
Typesetter and cover designer: Marija Tudor

ISBN 9781617298721
Printed in the United States of America

To Yashi, Pakhi, Rudra, and Shiva

vi

brief contents
PART 1 BASICS .. 1

1 ■ Introduction to machine learning 3

2 ■ Clustering techniques 32

3 ■ Dimensionality reduction 77

PART 2 INTERMEDIATE LEVEL .. 109

4 ■ Association rules 111

5 ■ Clustering 149

6 ■ Dimensionality reduction 176

7 ■ Unsupervised learning for text data 202

PART 3 ADVANCED CONCEPTS ... 233

8 ■ Deep learning: The foundational concepts 235

9 ■ Autoencoders 267

10 ■ Generative adversarial networks, generative AI, and
ChatGPT 279

11 ■ End-to-end model deployment 291

appendix A ■ Mathematical foundations 307

vii

contents
foreword xiv
preface xvi
acknowledgments xviii
about this book xx
about the author xxiii
about the cover illustration xxiv

PART 1 BASICS .. 1

1 Introduction to machine learning 3

1.1 Technical toolkit 4

1.2 Data, data types, data management, and quality 5

What is data? 5 ■ Various types of data 6 ■ Data quality 9
Data engineering and management 11

1.3 Data analysis, ML, AI, and business intelligence 12

1.4 Nuts and bolts of ML 14

1.5 Types of ML algorithms 17

Supervised learning 18 ■ Unsupervised algorithms 24
Semisupervised algorithms 28 ■ Reinforcement learning 28

1.6 Concluding thoughts 29

2 Clustering techniques 32

2.1 Technical toolkit 33

CONTENTSviii

2.2 Clustering 34

2.3 Centroid-based clustering 37

K-means clustering 39 ■ Measuring the accuracy of clustering 42
Finding the optimum value of k 43 ■ Pros and cons of k-means
clustering 44 ■ K-means clustering implementation using
Python 46

2.4 Connectivity-based clustering 50

Types of hierarchical clustering 52 ■ Linkage criterion for distance
measurement 53 ■ Optimal number of clusters 54 ■ Pros and
cons of hierarchical clustering 56 ■ Hierarchical clustering case
study using Python 57

2.5 Density-based clustering 60

Neighborhood and density 60 ■ DBSCAN clustering 62

2.6 Case study using clustering 67

Business context 68 ■ Dataset for the analysis 69 ■ Suggested
solutions 70 ■ Solution for the problem 70

2.7 Common challenges faced in clustering 72

2.8 Concluding thoughts 74

2.9 Practical next steps and suggested readings 74

3 Dimensionality reduction 77

3.1 Technical toolkit 78

3.2 The curse of dimensionality 78

3.3 Dimension reduction methods 82

Mathematical foundation 82

3.4 Manual methods of dimensionality reduction 82

Manual feature selection 83 ■ Correlation coefficient 84
Algorithm-based methods for reducing dimensions 85

3.5 Principal component analysis 85

Eigenvalue decomposition 90 ■ Python solution using PCA 91

3.6 Singular value decomposition 97

Python solution using SVD 98

3.7 Pros and cons of dimensionality reduction 101

3.8 Case study for dimension reduction 103

3.9 Concluding thoughts 106

3.10 Practical next steps and suggested readings 106

CONTENTS ix

PART 2 INTERMEDIATE LEVEL 109

4 Association rules 111

4.1 Technical toolkit 112

4.2 Association rule overview 112

4.3 The building blocks of association rules 114

Support, confidence, lift, and conviction 115

4.4 Apriori algorithm 119

Python implementation 121 ■ Challenges with the Apriori
algorithm 125

4.5 Equivalence class clustering and bottom-up
lattice traversal 126

Python implementation 129

4.6 F-P algorithm 130

4.7 Sequence rule mining 137

Sequential Pattern Discovery Using Equivalence 138

4.8 Case study for association rules 142

4.9 Concluding thoughts 145

4.10 Practical next steps and suggested readings 147

5 Clustering 149

5.1 Technical toolkit 150

5.2 Clustering: A brief recap 150

5.3 Spectral clustering 151

Building blocks of spectral clustering 153 ■ The process
of spectral clustering 156

5.4 Python implementation of spectral clustering 158

5.5 Fuzzy clustering 160

Types of fuzzy clustering 161 ■ Python implementation of
FCM 164

5.6 Gaussian mixture model 167

EM technique 169 ■ Python implementation of GMM 171

5.7 Concluding thoughts 174

5.8 Practical next steps and suggested readings 174

CONTENTSx

6 Dimensionality reduction 176

6.1 Technical toolkit 177

6.2 Multidimensional scaling 177

Classic MDS 179 ■ Nonmetric MDS 180

6.3 Python implementation of MDS 184

6.4 t-distributed stochastic neighbor embedding 189

Cauchy distribution 191 ■ Python implementation
of t-SNE 193

6.5 Uniform manifold approximation projection 196

Working with UMAP 197 ■ Using UMAP 197
Key points of UMAP 198

6.6 Case study 198

6.7 Concluding thoughts 200

6.8 Practical next steps and suggested readings 200

7 Unsupervised learning for text data 202

7.1 Technical toolkit 203

7.2 Text data is everywhere 203

7.3 Use cases of text data 204

7.4 Challenges with text data 205

7.5 Preprocessing the text data 207

7.6 Data cleaning 207

7.7 Extracting features from the text dataset 209

7.8 Tokenization 210

7.9 BOW approach 211

7.10 Term frequency and inverse document frequency 213

7.11 Language models 214

7.12 Text cleaning using Python 216

7.13 Word embeddings 219

7.14 Word2Vec and GloVe 221

7.15 Sentiment analysis case study with Python
implementation 222

7.16 Text clustering using Python 228

7.17 GenAI for text data 230

7.18 Concluding thoughts 230

7.19 Practical next steps and suggested readings 231

CONTENTS xi

PART 3 ADVANCED CONCEPTS 233

8 Deep learning: The foundational concepts 235

8.1 Technical toolkit 236

Deep learning: What is it? What does it do? 236

8.2 Building blocks of a neural network 238

Neural networks for solutions 238 ■ Artificial neurons and
perceptrons 239 ■ Different layers in a network 241
Activation functions 243 ■ Hyperparameters 245
Optimization functions 246

8.3 How does deep learning work in a supervised
manner? 248

Supervised learning algorithms 248 ■ Step 1: Feed-forward
propagation 248 ■ Step 2: Adding the loss function 249
Step 3: Calculating the error 250

8.4 Backpropagation 250

The mathematics behind backpropagation 251 ■ Step 4:
Optimization 253

8.5 How deep learning works in an unsupervised
manner 253

8.6 Convolutional neural networks 254

Key concepts of CNN 254 ■ Use of CNN 256

8.7 Recurrent neural networks 256

Key concepts of RNN 256

8.8 Boltzmann learning rule 258

Concepts of the Boltzmann learning rule 258 ■ Key points 259

8.9 Deep belief networks 259

Key points of DBN 259

8.10 Popular deep learning libraries 261

Python code for Keras and TF 262

8.11 Concluding thoughts 263

8.12 Practical next steps and suggested readings 264

9 Autoencoders 267

9.1 Technical toolkit 267

9.2 Feature learning 268

CONTENTSxii

9.3 Introducing autoencoders 268

9.4 Components of autoencoders 269

9.5 Training of autoencoders 270

9.6 Application of autoencoders 271

9.7 Types of autoencoders 271

9.8 Python implementation of autoencoders 275

9.9 Concluding thoughts 277

9.10 Practical next steps and suggested readings 277

10 Generative adversarial networks, generative AI, and

ChatGPT 279

10.1 AI: A transformation 279

10.2 GenAI and its significance 280

10.3 Discriminative models and GenAI 282

10.4 Generative adversarial networks 283

The generator network 283 ■ The discriminator network 284
Adversarial training 285 ■ Variants and applications of
GANs 286 ■ BERT, GPT-3, and others 286

10.5 ChatGPT and its details 287

Key features of ChatGPT 287 ■ Applications of ChatGPT 287

10.6 Integration of GenAI 288

10.7 Concluding thoughts 289

10.8 Practical next steps and suggested readings 290

11 End-to-end model deployment 291

11.1 The machine learning modeling process 292

11.2 Business problem definition 292

11.3 Data discovery and feasibility analysis 294

11.4 Data cleaning and prepreparation 295

11.5 Duplicate values in the data 295

11.6 Categorical variables 296

11.7 Missing values in dataset 297

11.8 Outliers present in the data 299

11.9 Exploratory data analysis 299

11.10 Model development and business approval 300

xiii

11.11 Model deployment 300

11.12 Purpose of model deployment 300

11.13 Types of model deployment 301

11.14 Considerations while deploying the model 302

11.15 Documentation 303

11.16 Model maintenance and refresh 303

11.17 Concluding thoughts 304

11.18 Practical next steps and suggested readings 305

appendix A Mathematical foundations 307

index 319

xiv

foreword
In today’s dynamic landscape of AI and machine learning, the ability to extract mean-

ingful insights from unlabeled data is transforming industries and driving innovation.

As an AI leader and practitioner with experience across multiple sectors—and cur-

rently heading the Data Science and AI team at a major pharmaceutical company—I

have witnessed first-hand how groundbreaking ideas reshape entire industries.

 In our work in oncology and biopharma, we use AI to empower life sciences com-

panies to educate healthcare professionals and target key stakeholders with preci-

sion—ensuring that the right therapy reaches the right patient at the right time. In

regulated industries, where precision and compliance are paramount, innovative

approaches that extract actionable insights from raw, unlabeled data are not just ben-

eficial but essential.

 Data Without Labels is organized into three comprehensive parts that chart a clear

course from theory to application, as detailed in the table of contents. Part 1 lays the

groundwork with core unsupervised learning techniques, covering clustering, dimen-

sionality reduction, and anomaly detection to equip readers with essential tools for

interpreting raw data. Part 2 advances into sophisticated methodologies, introducing

self-supervised and contrastive learning approaches that overcome the limitations

imposed by scarce labeled data. Part 3 bridges theory and practice, delving into deep

learning essentials—from neural network building blocks, activation functions, and

autoencoders with practical TensorFlow and Keras code to cutting-edge generative

models, including generative adversarial networks, BERT, and large language models

like GPT. This final section illustrates how these tools can be applied to real-world

challenges, guiding practitioners in deploying AI-driven strategies that ensure optimal

outcomes while maintaining regulatory compliance.

FOREWORD xv

 I am honored to support and endorse this remarkable work. May it inspire you to

explore new frontiers in AI and drive innovative solutions that lead to better outcomes

for patients and the broader healthcare community.

 —RAVI GOPALAKRISHNAN, VICE PRESIDENT

DATA SCIENCE & AI, ASTRAZENECA

xvi

preface
Data is the new oil, electricity, and power. The amount of data available has exploded

in the past 10 to 15 years. AI-based solutions are harnessing the datasets, and hence AI

has made unprecedented progress in the past decade. It has transformed our lives—

the way we buy, plan, travel, respond, and connect. With the introduction of cloud

computing, massive computational power became readily available. One of the most

powerful additions has been large language models like ChatGPT, which revolution-

ized the entire ecosystem. Across all business domains, including retail, telecommuni-

cations, banking, financial services, insurance, healthcare, manufacturing, and

aviation—and cutting through the functions of marketing, CRM, production, supply

chains, pricing, quality—data-based AI tools are proving their tremendous value. Pre-

dictive algorithms, optimization solutions, and classification tools have improved effi-

ciency, reduced operations cost, enhanced profit, and opened new doors to

humankind. We can research for new drugs faster and more efficiently, create better

and safer manufacturing processes, enhance the effectiveness of business teams, and

generate superior and more mature business solutions.

 As an ardent follower of AI, I have witnessed both the unwavering excitement and

the complexity of navigating this complicated landscape, which is a combination of

technology, engineering, research, and human interest. Throughout the process of

writing this book, I have often been reminded of the complexities and nuances of

understanding AI. The answers are not simple, and, honestly, the more I explored the

topic, the more I came to appreciate the layers and shades that shape the way we

learn, act, and understand.

 This book has been a journey—a journey of discovery, reflection, challenge, and

certainly arduous work. A simple thought was the inception: a curiosity about unsu-

PREFACE xvii

pervised learning solutions by harnessing deep learning and generative AI. And

during this journey, the curiosity evolved into something that I hope will inspire,

inform, and perhaps challenge readers. This book is a culmination of hours of brain-

storming sessions, discussions and research, and thought and grit, woven together

with the intention of offering something tangible as well as valuable to readers.

 I’ve made a conscious effort to present convoluted ideas in a manner that is both

approachable as well as technically thorough. The goal is not just to help you compre-

hend deep learning or generative AI but to help you develop a much more in-depth

understanding of how these solutions are created, the mathematics behind them, and

how they can be adapted to solve a range of problems.

xviii

acknowledgments
This book is possible due to support from Manning Publications: a big thank you to

Manning. I owe a deep debt of gratitude to many individuals who have helped me in

shaping the book. To my mentors, colleagues, and friends—thank you for your

insights, patience, and unwavering support throughout this journey. I want to thank

the Manning team for making this book possible, particularly Andy Waldron, the

acquisitions editor who believed in this book and got it started; Ian Hough, the devel-

opment editor who saw the book through the writing process; Ravi Gopalakrishnan

for his excellent foreword; and Davide Dev Vento, the technical editor who provided

great technical insights throughout. Davide has been a senior advanced physicist and

high-performance computing specialist at Quantinuum since 2022. He specializes in

computational physics, high-performance computing, parallel computing, optimiza-

tion, and tuning.

 Thanks also to the rest of the team working in the background to get this book

published. To all the reviewers: Alessandro Buggin, Amaresh Rajasekharan, Arne

Peter Raulf, Bob Liu, Clifford Thurber, Gary Bake, Joel Holmes, Juan Jimenez, Keith

Kim, Krishna Chaitanya Anipindi, Lara Thompson, Leonardo Gomes da Silva,

Michael Aydinbas, Monica Guimaraes, Obiamaka Agbaneje, Oliver Korten, Ondřej

Krajíček, Paul Adamson, Radhakrishna Maddukuru, Ramakanth Gidijala, Richard

Vaughan, Rohit Mishra, Sergio Govoni, Simon Tschoeke, Simone Sguazza, Sruti S.,

Stephen Tobayiwa, Subhash Talluri, Todd Cook, and Vishwesh Ravi Shrimali, your

suggestions helped make this a better book.

 I am grateful to my family—my wife Yashi and my lovely kids Pakhi and Rudra for

bearing with me and giving me the time and space to bring this book into being.

ACKNOWLEDGMENTS xix

 Finally, I extend my thanks to you, the reader, for taking the time to engage with

this book. Your interest in the field of AI is what is driving the continued growth in

this field. I hope this book serves you well in this journey.

xx

about this book
As you read through the chapters, I urge you to not just absorb the material but to

actively experiment with the concepts and techniques presented. One of the best

techniques to learn is getting your hands dirty; there are numerous practical exercises

and challenges to reinforce your understanding. Whether you are reading the book in

its entirety or only the portions that pique your interest, I hope you find something

meaningful in these pages.

Who should read this book

This book serves as both an introduction to unsupervised learning, deep learning,

and generative AI for newcomers and a comprehensive reference for experienced

professionals. It is intended for those interested in the latest trends, methodologies,

and best practices in unsupervised learning, including students and researchers who

wish to explore unsupervised learning algorithms in depth. Data science professionals

seeking insights and solutions to common challenges and managers aiming to com-

municate effectively with teams and clients will find value here. Additionally, curious

individuals looking to learn about unsupervised learning algorithms and enhance

their Python skills through case studies will benefit.

 The book assumes a basic knowledge of software engineering but provides expla-

nations and references for foundational material when needed. Familiarity with

object-oriented programming languages like C++, Java, and Objective-C is advisable,

as well as experience with Python, which is used throughout the book. A basic under-

standing of mathematics and geometry will aid in visualizing results, and knowledge of

data-related use cases will assist in relating to business scenarios. Above all, an open

mindset for learning is essential.

ABOUT THIS BOOK xxi

How this book is organized: A road map

The book is organized into three parts, each covering a key area of unsupervised

learning.

 In part 1, we explore the basic principles, mathematical foundations, and core

algorithms around clustering and dimensionality reduction techniques.

 As the book progresses into part 2, we dive into more advanced topics such as deal-

ing with text data, advanced clustering, and advanced dimensionality reduction

algorithms.

 Part 3 (perhaps the most complex) is focused on deep learning and generative AI

solutions. In this book, we aim to bridge the gap between theoretical knowledge and

practical application, and hence we give emphasis to pragmatic case studies, examples,

and exercises. It is complemented by developing solutions with Python using AI algo-

rithms. All the datasets and Python code books are checked in at the GitHub location.

 All the very best for the upcoming journey. We hope it is as enriching and exciting

for you as it has been for us.

About the code

This book contains many examples of source code both in numbered listings and in

line with normal text. In both cases, source code is formatted in a fixed-width font

like this to separate it from ordinary text. Sometimes code is also in bold to high-

light code that has changed from previous steps in the chapter, such as when a new

feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line

breaks and reworked indentation to accommodate the available page space in the

book. In rare cases, even this was not enough, and listings include line-continuation

markers (➥). Additionally, comments in the source code have often been removed

from the listings when the code is described in the text. Code annotations accompany

many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this

book at https://livebook.manning.com/book/data-without-labels. The complete

code for the examples in the book is available for download from the Manning web-

site at https://www.manning.com/books/data-without-labels, and from GitHub at

https://github.com/vverdhan/DataWithoutLabels.

liveBook discussion forum

Purchase of Data Without Labels includes free access to liveBook, Manning’s online

reading platform. Using liveBook’s exclusive discussion features, you can attach com-

ments to the book globally or to specific sections or paragraphs. It’s a snap to make

notes for yourself, ask and answer technical questions, and receive help from the

author and other users. To access the forum, go to https://livebook.manning

.com/book/data-without-labels/discussion.

https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels
https://www.manning.com/books/data-without-labels
https://github.com/vverdhan/DataWithoutLabels

ABOUT THIS BOOKxxii

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the author can take

place. It is not a commitment to any specific amount of participation on the part of

the author, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the author some challenging questions lest his interest stray! The

forum and the archives of previous discussions will be accessible from the publisher’s

website as long as the book is in print.

xxiii

about the author

VAIBHAV VERDHAN is a seasoned data science and AI professional,

and he has worked across geographies and domains. He is an

industry leader and a regular speaker at conferences and summits.

He loves to work on machine learning and AI problems and men-

tor students/professionals on data science and machine learning

solutions. Currently, he resides in London with his family.

xxiv

about the cover illustration
The figure on the cover of Data Without Labels is “Paysan des Environs de Berne,” or

“Peasant from the surroundings of Bern,” taken from a collection by Jacques Grasset

de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by

hand.

 In those days, it was easy to identify where people lived and what their trade or sta-

tion in life was just by their dress. Manning celebrates the inventiveness and initiative

of the computer business with book covers based on the rich diversity of regional cul-

ture centuries ago, brought back to life by pictures from collections such as this one.

Part 1

Basics

 Welcome to part 1.

 Machine learning and AI are not magic. Neither are they a secret art that can

be understood only by a select few. At their core, they are simply a way for us to

help the algorithms assimilate historical datasets and generate insights for us.

These insights help us to initiate better, faster, and more influential business

effects We give clear, logical instructions that guide the algorithms to do what we

want.

 But, like any art, learning machine learning and AI take practice. It’s not

about memorizing Python or R or a programming language syntax or learning

some commands to run the code or cut-paste the code. It’s about solving prag-

matic business problems, thinking about the business objectives critically, and

breaking down those complex tasks meticulously into smaller and manageable

steps and hence achieving the business objective.

 This book isn’t just about writing code; it’s about learning how to think like a

data scientist.

 If you’ve never studied unsupervised learning or you’ve never written a single

line of Python code, that’s perfectly fine. It is much easier than you think. We

start with simple unsupervised learning algorithms.

 All the very best on this journey. Let’s start with the basics, one step at a time.

3

Introduction to
machine learning

There are only patterns, patterns on top of patterns, patterns that affect other
patterns. Patterns hidden by patterns. Patterns within patterns.

—Chuck Palahniuk

There is a saying going around: “Data is the new electricity.” Data is indeed trans-

forming our world, much like electricity has; nobody can deny that. But like elec-

tricity, we must remember that data must be properly harnessed to utilize its value.

We have to clean the data and analyze and visualize it, and only then can we

develop insights from it. The fields of data science, machine learning (ML), and AI

are helping us to better harness data and extract trends and patterns so we can

make more insightful and balanced decisions in our activities and business.

This chapter covers

 An introduction to data, types of datasets, quality,

and sources

 Machine learning and types of machine learning

algorithms

 An overview of different types of algorithms

4 CHAPTER 1 Introduction to machine learning

 In this book, we unravel the puzzles of data and see how we can find the patterns

hidden within. We will be studying a branch of ML referred to as unsupervised learning.

Unsupervised learning solutions are one of the most influential approaches and are

changing the face of the industry. They are utilized in banking and finance, retail,

insurance, manufacturing, aviation, medical sciences, telecom, and almost every other

sector.

 Throughout the book, we discuss concepts of ML with a focus on unsupervised

learning—the building blocks of algorithms, their nuts and bolts, background pro-

cesses, and mathematical foundation. We will examine concepts, study best practices,

analyze common errors and pitfalls, and use a case study–based approach that comple-

ments the learning. At the same time, we develop actual Python code for solving such

problems. All the codes are accompanied by step-by-step explanations and comments.

 By the time you finish this book, you will have a very good understanding of unsu-

pervised technique-based ML, various algorithms, the mathematics and statistical

foundation on which the algorithm rests, business use cases, Python implementation,

and best practices.

 This first chapter is designed to introduce the concepts of ML. We’ll begin by dis-

cussing the concepts fundamental to all data analysis and ML: data itself, how it is

managed, and what constitutes good-quality data. We’ll then move on to discuss data

analysis in the context of ML and deep learning, consider different types of ML algo-

rithms, and wrap up by considering the technical toolkit recommended for getting

hands-on with the content in this book. Welcome to the first chapter and all the very

best!

1.1 Technical toolkit

The following tools are used for different facets of the project:

 Data engineering—Hadoop, Spark, Scala, Java, C++, SQL, Redshift, Azure,

PySpark

 Data analysis—SQL, R, Python, Excel

 ML—SQL, R, Python, Excel, Weka, Julia, MATLAB, SPSS, SAS

 Visualization—Tableau, Power BI, Qlik, COGNOS

 Model deployment—Docker, Flask, Amazon S3

 Cloud services—Azure, AWS, GCP

In this book, we are going to use Python. You are advised to install the latest version of

Python on your system. At least version 3.5+ is advisable, though the latest version as of

this writing is 3.13. We will also use Jupyter Notebook, so installing Anaconda on your

system is advisable.

NOTE All the codes and datasets will be checked in at the GitHub repository:
https://github.com/vverdhan/DataWithoutLabels. You are expected to repli-
cate them and try to reproduce the results.

https://github.com/vverdhan/DataWithoutLabels

51.2 Data, data types, data management, and quality

1.2 Data, data types, data management, and quality

We begin by introducing the protagonist of this book: data. Data can be thought of as

facts and statistics that are collected for performing any kind of analysis or study. But

data also has its own traits, attributes, quality measures, and management principles. It

is stored, exported, loaded, transformed, and measured. In that sense, data is a tangi-

ble “thing” in its own regard, and it must be handled properly to correctly utilize it. To

do that, we must properly understand data.

 Let’s start with the fundamentals: the definition of data. Once we’ve defined data,

we will proceed to discuss different types of data, their respective examples, and the

attributes of data that make it useful and of good quality.

1.2.1 What is data?

Data is ubiquitous. You make a phone call using a mobile network; as you do, you are

generating data. You book a flight ticket and hotel for an upcoming vacation; data is

being created. Our day-to-day activity-generated data might include performing a

bank transaction, surfing social media, or shopping websites online. That data is trans-

formed from one form to another, stored, cleaned, managed, and analyzed. So what

actually is it?

 Formally put, data is a collection of facts, observations, measures, text, numbers,

images, and videos. A dataset might be clean (i.e., organized to be free from errors,

inconsistencies, and irrelevant information) or unclean, be ordered (e.g., alphabeti-

cally) or unordered, or have mixed data types or all one type. As mentioned, data in

itself is not useful until we clean it, arrange it, analyze it, and draw insights from it. We

can visualize the transition from raw to more useful forms in figure 1.1.

Figure 1.1 How we can transform raw data to become information, knowledge, and, finally, insights that can be

used in business to drive decisions and actions

Raw data is converted to information when we can find distinctions in it. When we

relate the terms and “connect the dots,” the same piece of information becomes

knowledge. Insight is the stage where we can find the major centers and significant

Raw Data Information Knowledge Insights

6 CHAPTER 1 Introduction to machine learning

points. An insight should be actionable, succinct, and direct. For example, if a

customer retention team of a telecom operator is told that customers who do not

make a call for nine days have a 30% higher chance of churn than those who make

calls, this will be a useful insight that they can work on and try to resolve. Similarly, if a

line technician in a manufacturing plant is informed that using mold X results in 60%

more defects than using mold Y, they will refrain from using the poorly performing

mold in the future. An insight is quite useful for a business team because they can con-

sider it and take corrective measures.

1.2.2 Various types of data

As we’ve discussed, data is generated by much of our day-to-day activity. We can

broadly classify that data into different types, as shown in figure 1.2.

Figure 1.2 The divisions and subdivisions of data

Data can be divided into quantitative and qualitative categories, which are further sub-

classified:

 Qualitative data is the data type that cannot be measured or weighed—for exam-

ple, taste, color, odor, fitness, name, etc. They can only be observed subjectively.

Formally put, when we categorize something or make a classification for it, the

data generated is qualitative in nature. Examples are colors in a rainbow, cities

in a country, quality of a product, gender, etc. They are also called categorical

variables. Qualitative data can be further subcategorized into binary, nominal,

and ordinal datasets:

– Binary data, as the name suggests, has only two classes that are mutually

exclusive to each other. Examples are yes/no, dry/wet, hard/soft, good/bad,

true/false, etc.

– Nominal data can be described as the type of data that, though categorized,

does not have any sequence or order. Examples are distinct languages that

Data

Quantitative

Discrete Continuous

Qualitative

Binary Nominal Ordinal

71.2 Data, data types, data management, and quality

are spoken in a country, colors in a rainbow, types of services available to a

customer, cities in a country, etc.

– Ordinal data is similar to nominal data, except we can order it in a sequence.

Examples are fast/medium/slow, positive/neutral/negative, etc.

 Quantitative data is all the types of data points that can be measured, weighed,

scaled, recorded, etc. Examples are height, revenue, number of customers,

demand quantity, area, volume, etc. They are the most common form of data

and allow mathematical and statistical operations. Quantitative data is further

subcategorized as discrete and continuous:

– Discrete data is precise, to the point, and represented as integers. For exam-

ple, the number of passengers in a plane or the population of a city cannot

be in decimals.

– Continuous data points can take any value, usually in a range. For example,

height can take decimal values or the price of a product need not be an integer.

Any data point will generally will fall into one of these classes, based on its properties.

There is one more logical grouping that can be done using source and usage, which

makes a lot of sense while solving business problems. This grouping allows us to

design solutions customized to the data type.

 Depending on the source and usage, we can also think of data in two broad classes:

structured and unstructured data. A dataset that can be represented in a row-column

structure easily is a structured dataset. For example, transactions made by five custom-

ers in a retail store can be stored, as shown in table 1.1.

In table 1.1, for each unique customer ID, we have the transaction date, the amount

spent in dollars, the number of items purchased, the mode of payment, and the city in

which the transaction was made. Such a data type can be extended to employee

details, call records, banking transactions, etc.

NOTE Most of the data used in analysis and model building is structured.
Structured data is easier to store, analyze, and visualize in the form of graphs
and charts.

Table 1.1 An example of a structured dataset with attributes like amount, date, city, items, etc.

Customer ID Transaction date Amount ($) No. of items Payment mode City

1001 01-June-2024 100 5 Cash New Delhi

1002 02-June-2024 101 6 Card New York

1003 03-June-2024 102 7 Card London

1004 04-June-2024 103 8 Cash Dublin

1005 05-June-2024 104 9 Cash Tokyo

8 CHAPTER 1 Introduction to machine learning

Many algorithms and techniques cater to structured data—in normal real-world lan-

guage, we refer to structured data primarily. Unstructured data is not easily sorted

into a row-column structure. It can be text, audio, image, or video. Figure 1.3 shows

examples of unstructured data and their respective sources, as well as the primary

types of unstructured data: text, images, audio, and video along with their examples.

Computers and processors understand only binary numbers. So these unstructured

data points still need to be represented as numbers so that we can perform mathemat-

ical and statistical calculations on them. For example, an image is made up of pixels. If

it is a colored image, each pixel will have RGB (red, green, blue) values and each RGB

can take a value (0–255). Hence, we will be able to represent an image as a matrix on

which further mathematical calculations can be made. Text, audio, and video can be

represented similarly.

NOTE In general, deep learning-based solutions like convolutional neural
networks (CNN) and recurrent neural networks (RNN) are used for unstruc-
tured data. We are going to work on text and explore CNN and RNN at a
later stage in the book.

Unstructured data can be understood through an example: consider a picture of a

vacuum cleaner, as shown in figure 1.4. A portion of the image can be represented as

a matrix and will look like the matrix seen in the figure. This example is only for illus-

tration purposes and doesn’t show actual values.

U
n

s
tr

u
c
tu

re
d

 d
a
ta

Text data

Images data

Audio data

Video data

Facebook reviews, tweets, customer
complaints, product reviews

Product images, objects

Call center recordings, radio ads

YouTube videos, product videos,
video ads, product shoots

Figure 1.3 Unstructured data,

along with its various types and

examples. This data is usually

complex to analyze and

generally requires deep learning-

based algorithms.

Figure 1.4 An

example of how

unstructured data can

be represented as a

matrix to analyze. The

matrix on the right is

only an illustration

and not the actual

numbers.

91.2 Data, data types, data management, and quality

Similarly, we can have representations of text, audio, or video data. Due to the size

and large number of dimensions typically present in such data, this kind of unstruc-

tured data is complex to process and model, and hence, in general, deep learning-

based models serve that purpose.

 In addition to the broad types of data we’ve discussed so far, we can have more cat-

egories like ratios or scales, which can be used to define the relationship of one vari-

able with another. All these data points (whether structured or unstructured) are

defined by the way they are generated in real life.

 All of these data points have to be captured, stored, and managed. There are quite

a few tools available for managing data, which we will discuss in due course. But

before that, let’s examine one of the most crucial but often less talked about subjects:

data quality.

1.2.3 Data quality

“Garbage in, garbage out”—this principle summarizes the importance of good-quality

data. If the data is dirty or incorrect and lacks any business relationship between vari-

ables, we will not be able to solve the business problem at hand. But what is the mean-

ing of “good quality”? Imagine you want to predict rainfall this year based on last

year’s daily rainfall measurements. A good-quality dataset for this task would be as

complete as possible (very few missing days of rainfall measurements). It would be rel-

evant and valid (e.g., covering the same local area as where you are making your pre-

dictions), the measurements

would be accurate, and the data

would be readily available for

you to access and use without

permission problems. A bad

dataset, in contrast, might have

lots of “holes” in the data, might

have been taken in an area dis-

tant from the site you wish to

study (making it less relevant),

or might be difficult to access.

As you can no doubt gather,

good-quality data facilitates

good-quality outputs, while bad

data quality actively hinders

your work and will likely result

in a poor outcome. The major

components of data quality are

shown in figure 1.5. Let’s

explore them one by one.

Data

quality

Complete

Valid

Accurate

Available

Consistent

Timeliness

Integrity

Representative

Figure 1.5 Data quality is of paramount importance;

attributes of good-quality data are shown.

10 CHAPTER 1 Introduction to machine learning

The major attributes of good-quality data are

 Completeness—We would expect our dataset to be proper and not missing any

values. For example, if we are working on sales data for a year, good data will

have all the values for all 12 months. Then it will be a complete data source.

The completeness of a dataset ensures that we are not missing an important

variable or data point.

 Validity—The validity of data is its conformance to the properties, characteris-

tics, and variations that are present and being analyzed in our use case. Validity

indicates if the observation and measurement we have captured are reliable

and valid. For example, if the scope of the study is for 2015–2019, then using

2014 data will be invalid.

 Accuracy—Accuracy is an attribute focusing on the correctness of data. If we

have inaccurate data, we will generate inaccurate insights, and actions will be

faulty. It is a good practice to start the project by generating key performance

indicators (KPIs) and comparing them with the numbers reported by the busi-

ness to check the authenticity of the data available to us.

 Representativeness—This is one of the most important attributes of the data and

often the most undermined. Representation of data means that the data in use

truly captures the business need and is not biased. If the dataset is biased or is not

representative enough, the model generated will not be able to make predictions

on the new and unseen data, and the entire effort will go down the drain.

 Availability—Nonavailability of data is a challenge we face often. Data might not

be available for the business problem, and then we face a dilemma on whether

to continue the use case. Sometimes we face operational challenges and do not

have access to the database or permission problems, or data might not be avail-

able at all for a particular variable since it is not captured. In such cases, we have

to work with the data available and use surrogate variables. For example, imag-

ine we are working on a demand generation problem. We want to predict how

many customers can be expected during the upcoming sales season for a partic-

ular store. But we do not record the number of customers visiting for a few

months. We can then use revenue as a surrogate field and synthesize the miss-

ing data points.

 Consistency—Here we check whether the data points are consistent across sys-

tems and interfaces. It should not be the case that one system is reporting a dif-

ferent revenue figure while another system is showing a completely different

value. When faced with such a problem, we generate the respective KPIs as per

the data available and seek guidance from the business team.

 Timeliness—Timeliness simply means that we have all the data that is required at

this point. If the dataset is not available now but might become available in the

future, then it might be prudent to wait.

 Integrity—The data tables and variables we have are interlinked and interrelated

to each other. For example, an employee’s details can be spread over multiple

111.2 Data, data types, data management, and quality

tables that are linked to each other using the employee’s ID. Data integrity

addresses this requirement and ensures that all such relations between the

tables and respective entities are consistent.

The quality of data is of paramount importance. In pragmatic day-to-day business,

often we do not get good-quality data. Due to multiple challenges, good, clean data

that is accessible, consistent, representative, and complete is seldom found.

 Degradation in quality can be due to challenges during data capturing and collec-

tion, exporting or loading, transformations done, etc. A few of the possibilities are as

follows:

 We can get integers as names, or special characters like “#$!&” in a few col-

umns, or null values, blanks, or not a number (NaN) as some of the values.

 There may be duplicates in the records.

 Outliers may occur. This is a nuisance we deal with quite a lot. For example,

let’s say that the average daily transactions are 1,000 for an online retailer. One

fine day, due to a server problem, there were no transactions done. It is an out-

lier situation. Or, one fine day, the number of transactions was 1,000,000. It is

again an example of an outlier. Outliers can bias the algorithms we create.

 There may be seasonal variations and movements concerning the time of the

day and days of the week—all of them should be representative enough in the

dataset.

 Inconsistencies in the date format can lead to multiple challenges when we try

to merge multiple data sources. For example, source 1 might be using DD/

MM/YYYY while another might be using MM/DD/YYYY. This is taken care of

during the data loading step itself.

All these aberrations and quality problems should be addressed and cleaned thor-

oughly. We will be solving these data problems throughout the book and sharing the

best practices to be followed.

NOTE The quality of your raw data and the rigor shown during the cleaning
process directly affect the quality of your final analysis and the maturity of
your solution.

We have now defined the major attributes of data. We next study the broad process

and techniques used for data engineering and management.

1.2.4 Data engineering and management

A strong data engineering process and mature data management practice are prereq-

uisites for a successful ML model solution. Whether you come from a data engineer-

ing or data science background, each goes hand in hand; a data engineer would be

well served by understanding the basics of data science, and vice versa. Figure 1.6

provides a high-level overview of what the engineering process and management

12 CHAPTER 1 Introduction to machine learning

practice might look like. The end-to-end journey of data is described—right from the

process of data capturing, data pipeline, and data loading to the point it is ready for

analysis.

Figure 1.6 Data engineering paves the way for data analysis. It involves data loading, transformation,

enrichment, cleaning, preparation, etc., which leads to the creation of data ready for analysis.

In the data engineering step, data is cleansed, conformed, reshaped, transformed,

and ingested. Generally, we have a server where the final data is hosted and is ready

for access. The most used process is the creation of an export, transform, load (ETL)

process. Then we make the data ready for analysis. We create new variables, treat null

values, enrich the data with methods, and then finally proceed to the analysis/model-

building stage.

 Many times, we find that terms like data analysis, data science, machine learning,

data mining, artificial intelligence, business intelligence, big data, etc., are used quite

interchangeably in business. It is a good idea to clarify them, which is the topic of the

next section. There are plenty of tools available for each respective function that we

are discussing. We will also understand the role of software engineering in this entire

journey.

1.3 Data analysis, ML, AI, and business intelligence

ML and AI are relatively new fields, and as such, there is little standardization and dif-

ferentiation in the scope of their work. This has resulted in unclear definitions and

demarcation of these fields. We examine these fields—where they overlap, where they

Data engineering Data preparation

Clean
Merge
Reshape

Enrich Prepare

Ready for
analytics

Incoming
data

Ingest
Transform
Load

Load

Variable creation
Missing value treatment
Junk values removed

Incoming data
from multiple
sources is
loaded.

Data is enriched
and major
transformations
are done.

Data is further
enriched and will
be ready for
analysis.

131.3 Data analysis, ML, AI, and business intelligence

differ, and how one empowers the other. Each of the functions empowers and comple-

ments the other, as visualized in figure 1.7.

Figure 1.7 How the various fields are interlinked with each other and how they are dependent on each other

After the business problem has been defined and scoped properly, we start with the

technical process. Data mining and data engineering start the whole process by provid-

ing the data required for analysis. It also exports, transforms, cleans, and loads the data

so that it can be consumed by all of the respective functions. Business intelligence and

visualizations use this data to generate reports and dashboards. Data analytics generates

insights and trends using data. Data science stands on the pillars of data analysis, statis-

tics, business intelligence, data visualization, ML, and data mining. ML creates statisti-

cal and mathematical models, and AI further pushes the capabilities.

 ML uses traditional coding. The coding is performed in traditional languages (such

as Python), and hence, all the logic and rules of computer science and software engi-

neering are valid in ML too. ML helps us make sense of data that we are otherwise not

able to comprehend. The most fascinating advantage of ML is its ability to work on very

complex and high-dimensional data points like video, audio, image, text, or complex

datasets generated by sensors. It allows us to think beyond the obvious. Now AI can

achieve feats that were previously thought impossible. This level of pattern recognition

and learning has resulted in technological breakthroughs such as self-driving cars, chat-

bots conversing like humans, speech-to-text conversion and translation to another lan-

guage, automated grading of essays, photo captioning, etc. With the advent of

Data
analytics

Business
domain

Statistics

Business
intelligence

and
visualization

Data

Science

Machine learning
Data engineering

and mining

Empowers

Required

Deep
learning

Data Insights

Incoming
data

Actionable
insights
based on
the data

ML empowers data engineering. Data engineering is required for ML.

ML and data engineering make deep learning possible while deep learning improves ML and data engineering.

Data analysis, business domain, statistics, and data visualization enable data science.

14 CHAPTER 1 Introduction to machine learning

generative AI, using large language models like ChatGPT, we can create images, videos,

and text based on the prompt given by the user. And that is just the start!

1.4 Nuts and bolts of ML

Consider this: if a child has to be taught how to open a door, we show them the exact

steps quite a few times. The child tries to open it but fails. They try again and fail

again. But with each subsequent try, the child improvises their approach. And, after

some time, the child can open the door. Another example is when we learn to drive:

we make mistakes, we learn from them, and we improve. ML works similarly, wherein

the statistical algorithm looks at the historical data and finds patterns and insights.

The algorithm uncovers relationships and anomalies, trends and deviations, similari-

ties and differences—and then shares actionable results with us.

 Formally put, ML can be called a branch or a study of computer algorithms that

works on historical data to generate insights and helps in making data-driven deci-

sions. The algorithms are based on statistical and mathematical foundations and

hence have a sound logical explanation. ML algorithms require coding, which can be

done in any of the languages and tools available such as Python, R, SPSS, SAS, MAT-

LAB, Weka, Julia, Java, etc. It also requires a domain understanding of the business.

 Whenever you are doing some online shopping for clothing and the website rec-

ommends accessories that go along with it or you are booking an airplane ticket and

the travel operator shows you a customized deal as per your needs and plan, most of

the time, ML is working in the background. It has learned your preferences and com-

pared them with your historical trends. It is also looking for similarities you have with

other customers who behave almost the same. Based on all that analysis, the algorithm

is making an intelligent recommendation to you. Quite fascinating, right?

 Why exactly is ML so good at finding patterns? We humans can analyze only two or

maybe three dimensions simultaneously; for example, we can pick up a pattern

between two or three interacting variables. But what if there are 50 different variables

all interacting? We wouldn’t have a chance. An ML algorithm can work on 50, 60, or

maybe 100s of dimensions simultaneously. It can work on any type of data, structured

or unstructured, and it can help in the automation of tasks. Hence, it generates pat-

terns and insights quite difficult for a human mind to visualize.

 ML, like any other project, requires a team of experts who work closely with each

other and complement each other’s skill sets. As shown in figure 1.8, an ML project

requires the following roles:

 Business team—Business stakeholders and subject matter experts define the busi-

ness problem for the project. They own the solution, have a clear understanding

of the ask, and have a clear measurable goal in sight. They course-correct the

team in case of confusion and serve as experts who have a deep understanding

of the business processes and operations. They are marketing managers, product

owners, process engineers, quality experts, risk analysts, portfolio leads, etc. It is

imperative that business stakeholders are closely knit into the team from day one.

They help in course correction of the overall direction.

151.4 Nuts and bolts of ML

 Operations team—This team comprises the scrum master, project manager, busi-

ness analysts, etc. The role of the team can be compared to a typical project

management team, which tracks the progress, maintains the records, reports

the day-to-day activities, and keeps the entire project on track. They create user

stories and act as a bridge between the business team and the data team.

Figure 1.8 Team required for a data science project and the respective interactions of them with each

other—truly a team effort

 Data team—The core team that creates the solution, does the coding, and gen-

erates the output in the form of a model, dashboard, report, and insights is the

data team. It comprises three main pillars: the data engineering team, the UI/

visualization team, and the data science team. Their functions are as follows:

– The data engineering team is responsible for building, maintaining, integrat-

ing, and ingesting all the data points. They do a periodic data refresh and act

as a prime custodian of data. They use ETL, SQL, AWS, Kafka, PySpark, etc.

– The UI/visualization team builds dashboards, reports, interactive modules,

and web applications. They use SQL, Tableau, Qlik, Power BI, and others.

– The data science team is responsible for all the data analysis and model-build-

ing tasks. They discover patterns and insights, test hypotheses, and generate

the final output that is to be finally consumed by all. The final output can be

an ML model that will be used to solve the business problem. In situations

where an ML model is not possible, the team might generate actionable

Business team

Business owner

Subject matter

expert/consultant

IT/scrum master

Business analyst

Data engineering

Data science/ML

UI/visualizations/

dashboards/reports

Operations team Data team

Roles
• Define the business problem
• Owner of the solution

• Infra/tools required
• Project management

• Development of the solution
• Implement and maintain

16 CHAPTER 1 Introduction to machine learning

insights that can be useful for the business. This team requires SQL, Python,

R, SAS, SPSS, etc., to complete their job.

– The DevOps team is generally a part of the data engineering team, or they

can exist as a separate entity. They focus on the operationalization of the ML

model. Remember: if your ML model is not being used, it is just a shiny piece

of software sitting on a shelf. The UI/UX team will lead the development of

the final product layer where the ML-based outputs will be surfaced to the

end user. User experience is often ignored, and without an interactive and

engaging user experience, ML will not be used to its full potential.

The team sometimes has a testing team as well to assess the functionality, vari-

ous use cases, and overall look and feel of the application.

Having discussed the typical team structure for a data science project, we will now

examine the broad steps involved in a data science project.

 A data science project runs like any other project that has deadlines, stages, test-

ing, phases, etc. The raw material is the data that passes through various phases to be

cleaned, analyzed, and modeled.

 Figure 1.9 shows an illustration of a data science project’s stages. It starts with a

business problem definition of the project. The business problem must be concise,

clear, measurable, and achievable. Table 1.2 depicts an example of a bad (ill-defined)

and a good business problem.

Figure 1.9 A data science project is like any other project, having stages and deadlines, dependencies, and

processes.

Data science project steps

Data
input

Survey

Data
preprocessing

Model
dataset

Archetype segmentation

Identify clusters within
data

Bayesian belief networks

Identify variable change
implication

Text mining using
cosine-similarity

Identify key factors
in user experience

Business outcome

• Extracted segments
 based on customer
 buying habits
• Variable dependency
 graphs and their
 implication on sales

C5

C4

C2

C1

C3

171.5 Types of ML algorithms

Then we move to the data discovery phase, during which we list all the data sources

and host them. All the various datasets, like customer details, purchase histories, social

media data, portfolios, etc., are identified and accessed. The data tables that are to be

used are finalized in this step, and most of the time, we create a database for us to

work, test, and learn.

 We then go ahead with data preprocessing. It involves cleaning data like the

removal of null values, outliers, duplicates, junk values, etc. The previous step and this

one can take 60% to 70% of the project time.

 We create a few reports and generate initial insights during the exploratory data

analysis phase. These insights are discussed with the business stakeholders, and they

guide course correction.

 The data is now ready for modeling. Quite a few versions of the solution are tested.

Then, depending on the requirements, we choose the best version. Generally, param-

eters like accuracy and statistical measures like precision and recall drive the selection

of the model. We will be exploring the process of choosing the best model and terms

like precision and recall in later chapters of the book. Once we choose the final

model, we are ready to deploy the model in the production environment, where it will

work on unseen data.

 These are the broad steps in an ML project. Like any other project, there is a code

repository, best practices, coding standards, common errors, pitfalls, etc., which we

will discuss throughout the book.

1.5 Types of ML algorithms

ML models affect decision-making and follow a statistical approach to solve a business

problem. They work on historical data and find patterns and trends in it. The raw

material is the historical data, which is analyzed and modeled to generate a predictive

algorithm. The historical data available and the sort of problem that needs to be

solved informs the ML approach that should be taken. ML algorithms can be split

broadly into four classes: supervised learning, unsupervised learning, semisupervised

learning, and reinforcement learning, as depicted in figure 1.10. We will examine

Table 1.2 Examples of how to define a business problem to make it clear, concise, and measurable

Examples

Ill-defined business problems Good business problems

Increase the production Optimize the various cost heads (A, B, C, and D) and

identify the most optimal combination to decrease the

cost by 1.2% in the next six monthsDecrease the cost

Increase the revenue by 80% in one month From the various factors of defects in the process (X, Y,

Z), identify the most significant factors to reduce the

defect % by 1.8% in the next three monthsAutomate the entire process

18 CHAPTER 1 Introduction to machine learning

each of the four types in detail, with a focus on unsupervised learning—the topic of

this book.

 You might have heard about generative AI (GenAI) in the news. GenAI-based solu-

tions generally start with unsupervised and may include supervised or reinforcement

learning to specialize the model for certain tasks. We will discuss GenAI further

throughout the book.

Figure 1.10 ML algorithms can be classified as supervised learning algorithms, unsupervised

learning algorithms, semisupervised learning algorithms, and reinforcement learning algorithms.

1.5.1 Supervised learning

Formally put, supervised models are statistical models that use both the input data

and the desired output to predict the future. The output is the value that we wish to

predict and is referred to as the target variable, and the data used to make that predic-

tion is called training data. The target variable is sometimes referred to as the label.

The various attributes or variables present in the data are called independent variables.

Each of the historical data points or a training example contains these independent

variables and the corresponding target variable. Supervised learning algorithms make

a prediction for unseen future data. The accuracy of the solution depends on the

training done and patterns learned from the labeled historical data. An example is

described in the next section.

 Supervised learning problems are used in demand prediction, credit card fraud

detection, customer churn prediction, premium estimation, etc. They are heavily used

across domains like retail, telecom, banking and finance, aviation, insurance, and

more and for functions like marketing, CRM, quality, supply chain, pricing, and so on.

 Supervised learning algorithms can be further broken into regression algorithms

and classification algorithms. Let’s consider each of these in turn.

REGRESSION ALGORITHMS

Regression algorithms are supervised learning algorithms—that is, they require target

variables that need to be predicted. These algorithms are used to predict the values of

a continuous variable. Examples include revenue, amount of rainfall, number of trans-

actions, production yield, and so on. In supervised classification problems, we predict

a categorical variable like whether it will rain (yes/no), whether the credit card

Machine learning

Supervised Unsupervised Semisupervised Reinforcement
learning

Regression Classification

191.5 Types of ML algorithms

transaction is fraudulent or genuine, and so on. This is the main difference between

classification and regression problems.

 Let us understand the regression problem with an example. Say we assume that

the weight of a person is only dependent on height and not on other parameters like

gender, ethnicity, diet, etc. In such a case, we want to predict the weight of a person

based on height. The dataset and the graph plotted for the same data will look like

figure 1.11.

 A regression model will be able to find the inherent patterns in the data and fit a

mathematical equation describing the relationship. It can then take height as an

input and predict the weight. Here, height is the independent variable, and weight is

the dependent variable or the target variable or the label we want to predict.

Figure 1.11 Data and plot of relationship between height and weight that is used for regression

problem

There are quite a few algorithms available for regression problems. Some of the major

ones are as follows (although this list is certainly not exhaustive):

 Linear regression

 Decision tree

 Random forest

 k-nearest neighbor

 Boosting algorithm

 Neural network

We can use any of the algorithms to solve this problem. We will explore more by using

linear regression to solve a problem.

 The linear regression algorithm models the relationship between dependent vari-

ables and target variables by assuming a linear relationship between them. The linear

Weight (cm)Height (cm)

125

126

127

128

129

130

45

46

48

50

52

55

20 CHAPTER 1 Introduction to machine learning

regression algorithm would result in a mathematical equation for the problem, shown

in equation 1.1:

Weight = 0 * height + 1
(1.1)

Generally put, linear regression is used to fit a mathematical equation depicting the

relationship between dependent and independent variables, shown as equation 1.2:

Y = 0 + 1 x1 + 2x2 + ….+  (1.2)

Here, Y is the target variable that we want to predict; x1 is the first independent vari-

able; x2 is the second independent variable;  is the error term in the equation; and

0 is the intercept of the equation.

 A simple visualization for a linear regression problem is shown in figure 1.12. Here

we have the x and Y variables where x is the independent variable and Y is the target

variable. The objective of the linear regression problem is to find the line of best fit,

which can explain the randomness present in the data.

Equation 1.2 is used to make predictions for the unseen data. There are variations in

linear regression too, like simple linear regression, multiple linear regression, nonlin-

ear regression, etc. Depending on the data at hand, we choose the correct algorithm.

A complex dataset might require a nonlinear relationship between the various

variables.

 The next type of regression algorithm we shall explore is tree-based solutions. For

tree-based algorithms like decision trees, random forests, etc., the algorithm will start

from the top and then, like an if/else block, will split iteratively to create nodes and

subnodes until we reach a terminal node (see figure 1.13). In the decision tree dia-

gram, we start from the top with the root node, and then we perform splitting until we

reach the endpoint, which is the terminal node.

 Decision trees are simple to comprehend and implement, and they are fast to

train. Their usability lies in the fact that they are intuitive enough to understand with-

out much technical background.

Y

X

Y

X

Line of best fit

Figure 1.12 Raw

data that needs to

be modeled (left).

Using regression, a

line of best fit is

identified (right).

211.5 Types of ML algorithms

There are other famous regression algorithms like k-nearest neighbor, gradient boost-

ing, and deep learning–based solutions. Different regression algorithms are best

suited to specific contexts.

 To understand the effect of regression use cases, let’s consider a few business-rele-

vant use cases that are implemented in the industry:

 An airport operations team is assessing staffing requirements and wants to esti-

mate the amount of passenger traffic expected. The estimate will help the team

prepare a plan regarding future resource requirements and will help in the

optimization of the resources required. Regression algorithms can help in pre-

dicting the number of passengers.

 A retailer wants to understand the expected demand for the upcoming sales

season so it can plan the inventory. This will result in cost savings and avoid

stock-outs. Regression algorithms can help in such planning.

 A manufacturing plant wishes to improve the yield from the existing use of vari-

ous molds and raw materials. The regression solutions can suggest the best

combination of molds and predict the expected yield.

 A bank offers credit cards to its customers. Consider how the credit limit

offered to new customers is calculated. Based on the attributes of customers like

age, occupation, income, and previous transaction history, regression algo-

rithms can help in suggesting credit limits at a customer level.

 An insurance company wants to come up with a premium table for its custom-

ers using historical claims. The risk can be assessed based on the historical data

around driver details, car information, etc. Regression can surely help with such

problems.

Regression problems form the foundation of supervised learning problems and are

quite heavily used in the industry. Along with classification algorithms, they serve as a

go-to solution for most of the predictive problems used in real-world business.

CLASSIFICATION ALGORITHMS

Classification algorithms are used to predict the values of a categorical variable, which

is the dependent variable. This target variable can be binary (yes/no, good/bad,

fraud/genuine, pass/fail, etc.) or multiclass (such as positive/negative/neutral or

Root node

Decision node

Terminal node

Splitting

Figure 1.13 A decision tree has a root

node, and after splitting, we get a decision

node and a terminal node, which is the

final node and cannot be split further.

22 CHAPTER 1 Introduction to machine learning

yes/no/don’t know). Classification algorithms will ascertain whether the target event

will happen by generating a probability score for the target variable.

 After the model has been trained on historical data, a classification algorithm will

generate a probability score for the unseen dataset, which can be used to make the

final decision. Depending on the number of classes present in the target variable, our

business decision will vary. Let’s have a look at a use case for classification problems.

 Consider this: a telecom operator is facing a problem with its decreasing subscriber

base. The number of existing subscribers is shrinking, and the telecom operator would

like to arrest this churn of subscribers. For this purpose, an ML model is envisioned.

 In this case, the historical data or the training data available for model building

might look like table 1.3. These data points are only for illustration purposes and are

not exhaustive. There can be many other significant variables available.

In the example in table 1.3, the dataset comprises the past usage data of subscribers.

The last column (Churned) depicts if that subscriber churned out of the system or

not. For example, subscriber 1001 churned while 1002 did not. Hence, the business

problem is to build an ML model based on this historical data and predict if a new

unseen customer will churn or not.

 Here, the churned status (yes/no) is the target variable. It is also referred to as the

dependent variable. The other attributes like revenue, duration, average cost, monthly

usage, etc., are independent variables that are used to create the ML model. The his-

torical data is called the training data. Before the training of the model, the trained

supervised learning model will generate prediction probabilities for a new customer.

 There are quite a few algorithms available for classification problems; the major

ones are as follows:

 Logistic regression

 Decision tree

 Random forest

 k-nearest neighbor

 Naïve Bayes

 Support vector machine

Table 1.3 Example of a structured dataset for a telecom operator showing multiple data attributes

ID Revenue ($)
Duration of service

(years)
Avg. cost

Monthly usage

(days)
Churned (Y/N)

1001 100 1.1 0.10 10 Y

1002 200 4.1 0.09 25 N

1003 300 5.2 0.05 28 N

1004 200 0.9 0.25 11 Y

1005 100 0.5 0.45 12 Y

231.5 Types of ML algorithms

 Boosting algorithms

 Neural networks

One of the most popular classification algorithms is logistic regression. Logistic regres-

sion uses a logit function to model the classification problem. If we are solving for a

binary classification problem, it will be binary logistic regression or multiple logistic

regression. Similar to linear regression, logistic regression also fits an equation, albeit

it uses a sigmoid function to generate the probability score for the event to happen.

 A sigmoid function is a mathematical function that has a characteristic S-shaped

curve or a sigmoid curve. The mathematical equation of a sigmoid function is shown

in equation 3.1:

S(x) = 1/(1 + e –x) (1.3)

which can be rewritten as equation 1.4

S(x) = ex/(ex + 1) (1.4)

Logistic regression uses the sigmoid function. The equation used in the logistic

regression problem is shown in equation 1.5:

log (p/1 – p) = 0 + 1 x1 (1.5)

where p is the probability of the event happening; 0 is the intercept term; 1 is

the coefficient for the independent variable x1; log(p/1 – p) is called the logit; and

(p/1 – p) is the odds. As depicted in figure 1.14, if we try to fit a linear regression

equation for the probability function, it will not do a good job. We want to obtain the

probability scores (i.e., a value between 0 and 1). The linear regression will not only

return values between 0 and 1 but also probability scores that are greater than 1 or less

than 0. Hence, we have a sigmoid function at right in the figure, which generates

probability scores for us between 0 and 1 only.

Figure 1.14 A linear regression model will not be able to do justice (left); hence, we have logistic

regression for classification. Linear regression can generate probability scores more than 1 or less

than 0 too, which is mathematically incorrect, whereas the sigmoid function generates probability

scores between 0 and 1 only (right).

1.0

X

0.0

1.0

X

0.0

24 CHAPTER 1 Introduction to machine learning

The logistic regression algorithm is one of the most widely used techniques for classifi-

cation problems. It is easy to train and deploy and is often the benchmark algorithm

whenever we start any supervised classification learning project.

 Tree-based algorithms like decision trees and random forests can also be used for

classification problems. The other algorithms are also used as per the requirements.

1.5.2 Unsupervised algorithms

Imagine you are given some paper

labels, as shown in figure 1.15. The task is

to arrange them by similarity. Now, there

are multiple approaches to that prob-

lem. You can use color, shape, or size.

Here, we do not have any label to guide

this arrangement. This is what makes

unsupervised algorithms different.

 Formally put, unsupervised learning

only takes the input data and then finds

patterns in it without referencing the

target variable. An unsupervised learn-

ing algorithm therefore reacts based on

the presence or lack of patterns in the

dataset.

Unsupervised learning is hence used for pattern detection, exploring the insights in the

dataset and understanding the structure of it, segmentation, and anomaly detection.

 We can understand unsupervised learning algorithms by looking at figure 1.16.

The figure on the left shows the raw data points represented in a vector space dia-

gram. On the right is the clustering, which will be done using an unsupervised learn-

ing algorithm.

Figure 1.16 An unsupervised learning algorithm finds patterns in the data on the left and results in

clusters on the right.

Figure 1.15 Example of various shapes that can

be grouped together using different parameters

251.5 Types of ML algorithms

Some use cases for unsupervised algorithms are as follows:

 A retail group wants to understand its customers better. The task is to improve

the customer’s stickiness, revenue, number of visits, basket size, etc. Customer

segmentation using unsupervised learning can be done here. Depending on

the customer’s attributes like revenue, number of visits, last visit date, age since

joining, demographic attributes, etc., the segmentation will result in clusters

that can be targeted personally. The result will be improved customer experi-

ence, increased customer lifetime value, etc.

 A network provider needs to create an anomaly detection system. The historical

data will serve as the anomalies data. The unsupervised learning algorithm will

be able to find patterns, and the outliers will be given out by the algorithm. The

distinguished anomalies will be the ones that need to be addressed.

 A medical product company wishes to find if there are any underlying patterns

in the image data of its patients. If there are any patterns and factors, those

patients can be treated better, and maybe they require a different approach.

Unsupervised learning can help with the image data, which will help address

the patients’ needs better.

 A digital marketing company wants to understand the “unknowns” in the

incoming customer data like social media interactions, page clicks, comments,

stars, etc. This understanding will help improve customers’ recommendations

and overall purchasing experience.

Unsupervised learning algorithms offer flexibility and performance when it comes to

finding patterns. They are usable for all kinds of data—the core topic of this book—

including structured data, text, or images.

 The major unsupervised learning algorithms are

 Clustering algorithms

 k-means clustering

 Hierarchical clustering

 DBSCAN clustering

 Spectral clustering

 Principal component analysis

 Singular value decomposition

 Association rules

 t-distributed stochastic neighbor embedding

 Autoencoders

We cover all these algorithms in detail in the coming chapters. We will examine the

mathematical concepts, the hidden processes, Python implementation, and the best

practices throughout the book. Let’s first understand the basic process by means of a

case study.

 A retailer wants to develop a deeper understanding of its consumer base and then

wants to offer personalized recommendations, promotions, discounts, offers, etc. The

26 CHAPTER 1 Introduction to machine learning

entire customer dataset should be segmented using attributes like persona, previous

purchase, response, external data, and so on (see figure 1.17).

Figure 1.17 Steps in an unsupervised learning algorithm from data sources to the final solution

ready for deployment

For the use case, the steps in an unsupervised learning project are as follows:

1 We start the project by defining the business problem. We wish to understand

the customer base better. A customer segmentation approach can be a good

solution. We want segments that are distinguishable using mathematical KPIs.

2 This is the data discovery phase. All the various datasets, like customer details,

purchase histories, social media data, portfolios, etc., are identified and

accessed. The data tables to be used are finalized in this step. Then, all the data

tables are generally loaded into a common database, which we will use to ana-

lyze, test, and learn.

3 Now we have access to the data. The next step is to clean it and make it usable.

We treat all the null values, NaN, junk values, duplicates, etc.

4 Once the data is clean and ready to be used, we perform an exploratory data

analysis of it. Usually, during exploratory analysis, we identify patterns, cyclicity,

aberrations, max-min range, standard deviation, etc. The outputs of the explor-

atory data analysis stage will be insights and understandings. We will also gener-

ate a few graphs and charts, as shown in figure 1.18.

5 We begin with the unsupervised approach now. We want to implement cluster-

ing methods, and hence we can try a few clustering methods like k-means, hier-

archical clustering, etc. The clustering algorithms will result in homogeneous

segments of customers based on their various attributes.

Data source 1 Data source 2 Data source 3 Data source 4

Data sources

Implementation

Output

Extract Cleanse Understand Cluster Validate Deliver

Cluster of objects similar to each other

271.5 Types of ML algorithms

Figure 1.18 Examples of the graphs and charts from the exploratory data analysis of the data

In the case study, we will be working on the past two to three years of data,

which is the training data. Since we are using an unsupervised approach, there

is no target variable here. The algorithm will merge the customer segments that

behave alike using their transactional patterns, their demographic patterns,

and their purchase preferences. It will look like the results in figure 1.19.

 -

 20.00

 40.00

 60.00

 80.00

 100.00

 -
 0.50
 1.00
 1.50
 2.00
 2.50
 3.00
 3.50
 4.00
 4.50

2014 2015 2016 2017 (Till date)

Performance YoY

Customers (1,000) Revenue (1,000,000)

0

50

100

150

200

250

300

97

12

50

181

234

12

280

22 9

103

Purpose

5%

29%

9%

53%

4%

Credit history

all paid

delayed previously

no credits/all paid

critical/other existing credit

existing paid

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rev/Cust

bu
si
ne

ss

do
m

es
tic

 a
pp

lia
nc

e

ed
uc

at
io
n

fu
rn

itu
re

/e
qu

ip
m

en
t

ne
w
 c
ar

ot
he

r

ra
di
o/

tv

re
pa

irs

re
tra

in
in
g

us
ed

 c
ar

Kids come first

I, me, and myself

Fashion diva

Lo
w

re
sp

on
de

r

M
ed

iu
m

re
sp

on
de

r

Big spender

Practical working

Value conscious

Engagement

style

Shopping

behavior

Life stage

Self-focused

singleYoungcoupleYoungparentOldercouple

S
ta

r
sh

o
p
p
e
rs

P
ro

m
is

in
g

sh
o
p
p
e
rs

D
e
a
l

h
u
n
te

rs
T
ri
a
l

cu
st

o
m

e
rs

D
is

e
n
g
a
g
e
d

Figure 1.19 Output of the clustering

algorithm where we can segment

customers using various attributes

28 CHAPTER 1 Introduction to machine learning

6 We now check how the various algorithms have performed; in other words, we

will compare the accuracy of each algorithm. The final clustering algorithm

chosen will result in homogeneous segments of customers, which can be tar-

geted and offered customized offers.

7 We discuss the results with the business stakeholders and make iterations based

on the feedback.

8 We deploy the solution in the production environment and are ready to work

on new unseen datasets.

These are the broad steps in an unsupervised problem. Algorithm creation and selec-

tion are tedious tasks. We will be studying these in detail later in the book.

 GenAI most often starts with an unsupervised stage. This stage enables the model

to learn patterns, structures, and relationships without explicit labels. It is sometimes

referred to as the pretraining stage. Once the model has been pretrained, we move to

the supervised stage. Here, the pretrained model is tailored to a specific task or

domain using a labeled dataset.

1.5.3 Semisupervised algorithms

Semisupervised learning is a middle path of the supervised and unsupervised

approaches. The primary reason for a semisupervised approach is the lack of availabil-

ity of a complete labeled dataset for training. Formally put, the semisupervised

approach uses both supervised and unsupervised approaches: supervised to classify

the data points and unsupervised to group them together.

 In semisupervised learning, we train initially on a smaller number of labeled data

points available using a supervised algorithm. Then we use it to label or pseudo-label

new data points. The two datasets (labeled and pseudo-labeled) are combined, and we

use this dataset for further analysis.

 Semisupervised algorithms are used in cases where the dataset is partially available,

like images in the medical industry. If we are creating a cancer detection solution by

analyzing the images of patients, we will likely not have enough sample sets of training

images. Here, the semisupervised approach can be helpful.

1.5.4 Reinforcement learning

Imagine you are playing a game of chess with a computer, and it goes like this:

 Round 1—You win after 5 moves.

 Round 2—You win after 8 moves.

 Round 3—You win after 14 moves.

 Round 4—You win after 21 moves.

 Round 5—The computer wins!

What is happening here is the algorithm is training itself iteratively depending on

each interaction and then correcting/improving itself.

291.6 Concluding thoughts

 Formally, reinforcement learning solutions are self-sustained solutions that train

themselves using a sequence of trial and error. One sequence follows the other. The

heart of reinforcement learning is reward signals. If the action is positive, the reward

is positive, indicating to continue. If the action is negative, the reward will penalize the

activity. Hence, the solution will always correct itself and move ahead, thereby improv-

ing itself iteratively.

 Self-driving cars are the best examples of reinforcement learning algorithms. They

detect when they should turn left or right, when to move, and when to stop. Modern

video games also employ reinforcement learning algorithms. Reinforcement learning

allows us to break the barriers of technology and imagine things that were earlier

thought impossible.

 With this, we have covered the different types of ML algorithms. Together, they are

harnessing the true power of data and creating a long-lasting effect on our lives. But

the heart of the solutions is the technology, which we have not discussed yet. We now

move to the technology stack required to make these solutions tick.

1.6 Concluding thoughts

A common question is: Which is better, R or Python? Both are fantastic languages.

Both are heavily used. But after the introduction of TensorFlow, Keras’s libraries on

AI, the balance has slightly tilted in favor of Python.

 You’ve now taken your first step in the journey toward learning unsupervised

machine learning techniques. It is time to wrap up.

 ML and AI are indeed pathbreaking. They are changing the way we travel, order

food, plan, buy, see a doctor, order prescriptions—they are making a dent everywhere.

ML is indeed a powerful capability that is paving the path for the future and is proving

much better than existing technology stacks when it comes to pattern identification,

anomaly detection, customizations, and automation of tasks. Autonomous driving,

cancer detection, fraud identification, facial recognition, image captioning, and chat-

bots are only a few examples where ML and AI are outperforming traditional technol-

ogies. And now is the best time to enter this field. This sector is attracting investments

from almost all business functions. The field has created thousands of job opportuni-

ties across the spectrum.

Exercise 1.1

Use these questions to check your understanding:

1 Why is ML so powerful that it is being used very heavily now?

2 What are the different types of ML algorithms, and how are they different from
each other?

3 What are the steps in an ML project?

4 What is the role of data engineering, and why is it important?

5 What are the various tools available for ML?

30 CHAPTER 1 Introduction to machine learning

 At the same time, the field lacks trained professionals: data analysts, data engi-

neers, visualization experts, data scientists, and data practitioners. They are all rare

breeds now. The field requires a regular supply of budding talents who will become

the leaders of tomorrow and will make data-driven decisions. We have only scratched

the surface of understanding the power of data—there are still miles to be covered.

 In the following chapter, we will dive deeper into the unsupervised learning con-

cepts of clustering. The mathematical and statistical foundations, a pragmatic case

study, and Python implementation are discussed. The discussion includes the simpler

clustering algorithms: k-means clustering, hierarchical clustering, and DBSCAN. In

the later chapters of the book, we will study more complex clustering topics like

Gaussian mixture modeling clustering, time series clustering, fuzzy clustering, etc.

Summary

 Data can be conceptualized as an interconnected set of facts and statistics nec-

essary for analysis, characterized by unique traits and governed by specific man-

agement principles.

 Real-world activities such as mobile calls, online transactions, and social media

interactions continually generate data, underscoring its omnipresence in mod-

ern life.

 Raw data requires cleaning, organization, and analysis to be converted effectively

into information and insights that can drive business decisions and actions.

 Data can be broadly classified into structured datasets, which follow a clear row-

column format, and unstructured datasets, like text and images, which require

more advanced analysis techniques.

 To analyze unstructured data, we typically transform it into numerical represen-

tations, often utilizing deep learning models such as CNNs and RNNs.

 A clear, concise, achievable, and measurable business problem is a vital step to

ensure the success of a data science project.

 High-quality data is essential for reliable analysis and is characterized by attri-

butes such as completeness, validity, accuracy, representativeness, availability,

consistency, timeliness, and integrity.

 Effective data engineering and management are crucial for preparing data for

analysis involving techniques like ETL processes and data cleaning.

 The role of UI/UX is of paramount importance to ensure adoption and usage

by the end consumers; otherwise, ML will just be a shiny piece sitting on a shelf.

 Interconnected fields like data analysis, ML, AI, and business intelligence each

play a critical role in processing and deriving insights from data.

 Supervised learning is an ML approach that uses existing data to predict future

outcomes, common in tasks like demand prediction and fraud detection.

 Supervised learning is divided into regression and classification tasks, each with

numerous available algorithms to model quantitative or categorical outcomes,

respectively.

31Summary

 Unsupervised learning algorithms discover patterns and relationships in data

independently of predefined target variables, useful in activities like segmenta-

tion and anomaly detection.

 Variants of unsupervised learning algorithms include clustering techniques and

methods for reducing data dimensionality, offering flexibility and performance

in pattern recognition.

 Semisupervised learning bridges supervised and unsupervised methods and is

effective when dealing with datasets that are partially labeled.

 Reinforcement learning involves systems that learn by trial and error, rewarding

desired outcomes, and are applied in dynamic decision-making tasks, such as

autonomous vehicle navigation.

 Technological solutions are at the heart of modern data-driven strategies, and

understanding the technological stack is essential to maximize the effect and

benefits of data solutions.

32

Clustering techniques

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

Nature loves simplicity and teaches us to follow the same path. Most of the time,

our decisions are simple choices. Simple solutions are easier to comprehend, less

time-consuming, and painless to maintain and ponder over. The machine learning

world is no different. An elegant machine learning solution is not the one that is

the most complicated algorithm available but the one that solves the business

problem. A robust machine learning solution is easy enough to readily decipher

This chapter covers

 Clustering techniques and salient use cases in

the industry

 Simple k-means, hierarchical, and density-based

spatial clustering algorithms

 Implementation of algorithms in Python

 A case study on cluster analysis

332.1 Technical toolkit

and pragmatic enough to implement. Clustering solutions are generally easier to

understand.

 In the previous chapter, we defined unsupervised learning and discussed the vari-

ous unsupervised algorithms available. We will cover each of those algorithms as we

work through this book; in this second chapter, we focus on the first of these: cluster-

ing algorithms.

 We will define clustering first and then study the different types of clustering tech-

niques. We will examine the mathematical foundation, accuracy measurements, and

pros and cons of each algorithm. We will implement three of these algorithms using

Python code on a dataset to complement theoretical knowledge. The chapter ends

with the various use cases of clustering techniques in the pragmatic business scenario

to prepare for the actual business world. This technique is followed throughout the

book—we study the concepts first, implement the actual code to enhance the Python

skills, and then dive into real-world business problems.

 We study basic clustering algorithms in this chapter, which are k-means clustering,

hierarchical clustering, and density-based spatial clustering of applications with noise

(DBSCAN) clustering. These clustering algorithms are generally the starting points

whenever we want to study clustering. In the later chapters of the book, we will

explore more complex algorithms like spectrum clustering, Gaussian mixture models,

time series clustering, fuzzy clustering, and others. If you have a good understanding

of k-means clustering, hierarchical clustering, and DBSCAN, you can skip to the next

chapter. Still, it is advisable to read this chapter once—you might find something use-

ful to refresh your concepts!

 Let’s first understand what we mean by clustering. Good luck on your journey to

master unsupervised learning–based clustering techniques!

2.1 Technical toolkit

We use the latest version of Python in this chapter. A basic understanding of Python

and code execution is expected. You are advised to refresh your knowledge of object-

oriented programming and Python.

 Throughout the book, we use Jupyter Notebook to execute the code. Jupyter offers

flexibility in execution and debugging. It is quite user-friendly and is platform or

operating-system agnostic. So, if you are using Windows, macOS, or Linux, Jupyter

should work just fine.

 All the datasets and code files are checked into the GitHub repository at https://

mng.bz/lYq2. You need to install the following Python libraries to execute the code:

numpy, pandas, matplotlib, scipy, and sklearn. CPU is good enough for execution,

but if you face some computing lags and would like to speed up the execution, switch

to GPU or Google Collaboratory (Colab). Google Colab offers free computation for

machine learning solutions. I recommend studying more about Google Colab and

how to use it for training machine learning algorithms.

https://mng.bz/lYq2
https://mng.bz/lYq2

34 CHAPTER 2 Clustering techniques

2.2 Clustering

Consider this scenario: a group of children is asked to group the items in a room into

different segments. Each child can use their own logic. Some might group the objects

based on weight; other children might use material or color; while yet others might

use all three: weight, material, and color. There are many permutations, and they

depend on the parameters used for grouping. Here, a child is segmenting or cluster-

ing objects based on the chosen logic.

 Formally put, clustering is used to group objects with similar attributes in the same

segments and objects with different attributes in different segments. The resultant

clusters share similarities within themselves while they are more heterogeneous

between each other. We can understand this better by looking at figure 2.1.

Cluster analysis is not one individual algorithm or solution; rather it is used as a

problem-solving mechanism in practical business scenarios. It is a class of algorithms

under unsupervised learning and an iterative process following a logical approach

and qualitative business inputs. It results in the generation of a thorough understand-

ing of the data and the logical patterns in it, pattern discovery, and information

retrieval. As an unsupervised approach, clustering does not need a target variable. It

performs segmenting by analyzing underlying patterns in the dataset, which are gen-

erally multidimensional and, hence, difficult to analyze with traditional methods.

 Ideally, we want the clustering algorithms to have the following attributes:

 The output clusters should be easy to explain and comprehend, usable, and

make business sense. The number of clusters should not be too few or too

many. For example, it is not ideal to have only two clusters, and the division is

not clear and decisive. On the other hand, if we have 20 clusters, handling them

will become a challenge.

 The algorithm should not be too sensitive to outliers or missing values or the

noise in the dataset. Generally put, a good solution will be able to handle multi-

ple data types.

 It is advisable for a data analyst/scientist to have a good grip on the business

domain, although a good clustering solution may allow analysts with less

domain understanding to train the clustering algorithm.

Figure 2.1 Clustering is grouping

objects with similar attributes into

logical segments. The grouping is

based on a similar trait shared by

different observations, and hence

they are gathered into a group. We

are using shape as a variable for

clustering here.

352.2 Clustering

 The algorithm should be independent of the order of the input parameters. If

the order matters, the clustering is biased on the order and hence will add

more confusion to the process.

 As we generate new datasets continuously, the clusters should be scalable to

newer training examples and should not be a time-consuming process.

As one could imagine, the clustering output will depend on the attributes used for

grouping. In figure 2.2, there can be two logical groupings for the same dataset, and

both are equally valid. Hence, it is prudent that the attributes or variables for cluster-

ing are chosen wisely, and often that decision depends on the business problem at

hand.

Along with the attributes used in clustering, the actual technique used also makes a

big difference. There are quite a few (in fact, more than 80) clustering techniques.

For the interested audience, we provide a list of all the clustering algorithms in the

appendix.

 Clustering can be achieved using a variety of algorithms. These algorithms use dif-

ferent methodologies to define similarity between objects—for example, density-

based clustering, centroid-based clustering, distribution-based methods, and others.

Multiple techniques, such as Euclidean distance, Manhattan distance, etc., are avail-

able to measure the distance between objects. The choice of distance measurement

leads to different similarity scores. We will study these similarity measurement parame-

ters in a later section.

 At a high level, we can identify two broad clustering methods: hard clustering and

soft clustering (see figure 2.3). When the decision is quite clear that an object belongs

to a certain class or cluster, it is referred to as hard clustering. In hard clustering, an

algorithm is quite sure of an object’s class. On the other hand, soft clustering assigns a

likelihood score for an object belonging to a particular cluster. So, a soft clustering

Figure 2.2 Using different

attributes for clustering results in

different clusters for the same

dataset. Hence, choosing the

correct set of attributes defines the

final set of results we will achieve.

36 CHAPTER 2 Clustering techniques

method will not put an object into a cluster; rather, an object can belong to multiple

clusters. Soft clustering sometimes is also called fuzzy clustering.

Figure 2.3 Hard clustering has distinct clusters, whereas in the case of soft clustering, a data

point can belong to multiple clusters, and we get a likelihood score for a data point to belong to

a cluster. The figure on the left is hard clustering, and the one on the right is soft clustering.

We can broadly classify the clustering techniques as shown in table 2.1. The methods

described are not the only ones available. We can have graph-based models, overlap-

ping clustering, subspace models, etc.

Note: This list is not exhaustive.

Generally, the six most popular algorithms used in clustering in the industry are as

follows:

 k-means clustering (with variants like k-medians, k-medoids)

 Agglomerative clustering or hierarchical clustering

Table 2.1 Classification of clustering methodologies, brief descriptions, and examples

Serial no. Clustering methodology Brief description of the method Example

1 Centroid-based

clustering

Distance from a defined centroid k-means

2 Density-based models Data points are connected in

dense regions in a vector space

DBSCAN, OPTICS

3 Connectivity-based

clustering

Distance connectivity is the

modus operandi

Hierarchical clustering, bal-

anced iterative reducing and

clustering using hierarchies

4 Distribution models Modeling is based on statistical

distributions

Gaussian mixture models

5 Deep learning models Unsupervised neural network

based

Self-organizing maps

372.3 Centroid-based clustering

 DBSCAN

 Spectral clustering

 Gaussian mixture models

 Balanced iterative reducing and clustering using hierarchies

Multiple other algorithms are available, like Chinese whisper, canopy clustering, SUB-

CLU, FLAME, and others. We will study the first three algorithms in this chapter and

some of the advanced ones in subsequent chapters in the book.

2.3 Centroid-based clustering

Centroid-based algorithms measure the similarity of the objects based on their dis-

tance to the centroid of the clusters (for more information on centroids, see the

appendix). The distance is measured between a specific data point to the centroid for

the cluster. The smaller the distance, the higher the similarity. We can understand the

concept by looking at figure 2.4. The figure on the right side represents the respective

centroids for each of the group of clusters.

TIP To get more clarity on the concept of centroid and other mathematical
concepts, refer to the appendix.

Figure 2.4 Centroid-based clustering methods create a centroid for the respective clusters, and the

similarity is measured based on the distance from the centroid. In this case, we have five centroids;

hence, we have five distinct clusters.

Exercise 2.1

Use these questions to check your understanding:

1 DBSCAN clustering is a centroid-based clustering technique. True or False?

2 Clustering is a supervised learning technique with a fixed target variable. True
or False?

3 What is the difference between hard clustering and soft clustering?

Centroids

38 CHAPTER 2 Clustering techniques

In clustering, distance plays a central role as many algorithms use it as a metric to

measure the similarity. In centroid-based clustering, distance is measured between

points and between centroids. There are multiple ways to measure the distance. The

most widely used are as follows:

 Euclidean distance—This is the most common distance metric used. It represents

the straight-line distance between the two points in space and is the shortest

path between the two points. For example, if we want to calculate the distance

between points P1 and P2 where coordinates are (x1, y1) for P1 and (x2, y2) for

P2, Euclidean distance is given by equation 2.1. The geometric representation is

shown in figure 2.5:

Distance = √(y2 – y1)2 + (x2 – x1)2 (2.1)

 Chebyshev distance—Named after Russian mathematician Pafnuty Chebyshev,

this is defined as the distance between two points such that their differences are

maximum value along any coordinate dimension. Mathematically, we can rep-

resent Chebyshev distance in equation 2.2 and as shown in figure 2.5:

Chebyshev distance = max (|y2 – y1|, |x2 – x1|) (2.2)

Figure 2.5 Euclidean distance, Chebyshev distance, Manhattan distance, and cosine distance are the primary

distance metrics used. Note how the distance is different for two points using these metrics. In Euclidean distance,

the direct distance is measured between two points, as shown by the first figure on the left.

 Manhattan distance—This is a very easy concept. It simply calculates the distance

between two points in a grid-like path, and the distance is hence measured

along the axes at right angles. Hence, sometimes it is also referred to as city

block distance or the taxicab metric. Mathematically, we can represent the Man-

hattan distance in equation 2.3 and as shown in figure 2.5:

Manhattan distance = (|y2 – y1| + |x2 – x1|) (2.3)

Manhattan distance is in L1 norm form while Euclidean distance is in L2 norm

form. Refer to the appendix to study the L1 norm and L2 norm in detail. If we

2 22

2

2 2 2

2

42

2

2

2

4
4

4

ϴ

x1

x2

392.3 Centroid-based clustering

have a high number of dimensions or variables in the dataset, Manhattan dis-

tance is a better choice than Euclidean distance. This is due to the curse of dimen-

sionality, which we will study in chapter 3.

 Cosine distance—Cosine distance is used to measure the similarity between two

points in a vector-space diagram. In trigonometry, the cosine of 0 is 1 and the

cosine of 900 is 0. Hence, if two points are similar to each other, the angle

between them will be zero; hence, cosine will be 1, which means the two points

are very similar to each other and vice versa. Mathematically, cosine similarity is

shown in equation 2.4. If we want to measure the cosine between two vectors A

and B, then cosine is

Cosine distance = (A . B) / (||A|| ||B ||) (2.4)

TIP If you want to refresh your knowledge on the concepts of vector factor-
ization, refer to the appendix.

Other distance-measuring metrics, such as Hamming distance, Jaccard distance, and

others, are available. Mostly, we use Euclidean distance in our pragmatic business

problems, but other distance metrics are also used sometimes.

NOTE These distance metrics are true for other clustering algorithms too. I
recommend testing the Python codes in the book with different distance met-
rics and comparing the performance.

Now that we understand the various distance metrics, we proceed to study k-means

clustering, which is the most widely used algorithm.

2.3.1 K-means clustering

K-means clustering is an easy and straightforward approach. It is arguably the most

widely used clustering method to segment data points and create nonoverlapping

clusters. We have to specify the number of clusters k we wish to create as an input, and

the algorithm will associate each observation to exactly one of the k clusters.

NOTE K-means clustering is sometimes confused with the k-nearest neighbor
(KNN) classifier. Although there is some relationship between the two, KNN
is used for classification and regression problems.

K-means clustering is quite an elegant approach and starts with some initial cluster

centers and then iterates to assign each observation to the closest center. In the pro-

cess, the centers are recalculated as the mean of points in the cluster. Let’s study the

approach used in a step-by-step fashion by using the diagram in figure 2.6. For the

sake of simplicity, we are assuming that there are three clusters in the dataset.

The steps are as follows:

1 Let’s assume that we have all the data points, as shown in step 1.

2 The three centers are initialized randomly, as shown by three squares: blue, red,

and green. This input of three is the final number of clusters we wish to have.

40 CHAPTER 2 Clustering techniques

Figure 2.6 Step 1 represents the raw dataset. In step 2, the algorithm initiates three random centroids as we have

given the input of the number of clusters as three. In step 3, all the neighboring points of the centroids are assigned

to the same cluster.

3 The distance of all the data points is calculated to the centers, and the points are

assigned to the nearest center. Note that the points have attained blue, red, and

green colors as they are nearest to those respective centers. (The colors are not

distinguishable in the print version; hence we have grouped them together.)

4 The three centers are readjusted in this step. The centers are recalculated as

the mean of the points in that cluster, as shown in figure 2.7. We can see that in

step 4, the three squares have changed their respective positions as compared

to step 3.

Figure 2.7 The centroids are recalculated in step 4. In step 5, the data points are again reassigned new centers.

In step 6, the centroids are again readjusted as per the new calculations.

5 The distance of all the data points is recalculated to the new centers and the

points are reassigned to the nearest centers again. Note that two blue data

points have become red while a red point has become green in this step.

6 The centers are again readjusted as they were in step 4.

7 The data points are again assigned a new cluster, as shown in figure 2.8.

8 The process will continue until convergence is achieved. In other words, the pro-

cess continues until there is no more reassignment of the data points; hence, we

cannot improve the clustering further, and the final clustering is achieved.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

412.3 Centroid-based clustering

Figure 2.8 The centroids are recalculated, and this process continues until we can no

longer improve the clustering. Then the process stops, as shown in step 8.

The objective of k-means clustering is to ensure that the within-cluster variation is as

small as possible while the difference between clusters is as big as possible. In other

words, the members of the same cluster are most similar to each other, while members

in different clusters are dissimilar. Once the results no longer change, we can conclude

that a local optimum has been reached, and clustering can stop. Hence, the final clus-

ters are homogeneous within themselves while heterogeneous with each other.

 It is imperative to note two points here:

 K-means clustering initializes the centers randomly; hence it finds a local opti-

mum solution rather than a global optimum solution. Thus it is advisable to

iterate the solution multiple times and choose the best output from all the

results. By iteration, we mean to repeat the process multiple times, as in each of

the iterations, the centroid chosen randomly will be different.

 We have to input the number of final clusters k we wish to have, and it changes

the output drastically. A very small value of k relative to the data size will result

in redundant clusters as they will not be of any use. In other words, if we have a

very small value of k relative to big-sized data, data points with different charac-

teristics will be cobbled together in a few groups. Having a very high value of k

will create clusters that are different from each other minutely.

Moreover, having a very high number of clusters will be difficult to manage

and refresh in the long run. Let’s study an example. If a telecom operator has 1

million subscribers, and if we take the number of clusters as two or three, the

resultant cluster size will be very large. This can also lead to different customers

classified in the same segment. On the other hand, if we take the number of

clusters as 50 or 60, due to the sheer number of clusters, the output becomes

unmanageable to use, analyze, and maintain.

With different values of k, we get different results; hence, it is necessary that we under-

stand how we can choose the optimum number of clusters for a dataset. Now let’s

examine the process to measure the accuracy of clustering solutions.

Step 7 Step 8

42 CHAPTER 2 Clustering techniques

2.3.2 Measuring the accuracy of clustering

One objective of clustering is to find the cleanest clusters. Theoretically (though not

ideally), if we have the same number of clusters as the number of observations, the

results will be completely accurate. In other words, if we have 1 million customers, the

purest clustering will have 1 million clusters, wherein each customer is in a separate

cluster. But it is not the best approach and is not a pragmatic solution either. Clustering

intends to create a group of similar observations in one cluster, and we use the same

principle to measure the accuracy of our solution. Other options include the following:

 Within the cluster sum of squares (WCSS) or cohesion—This index measures the vari-

ability of the data points with respect to the distance they are from the centroid

of the cluster. This metric is the average distance of each data point from the clus-

ter’s centroid, which is repeated for each data point. If the value is too large, it

shows there is a large data spread, whereas the smaller value indicates that the

data points are quite similar and homogeneous and hence the cluster is compact.

Sometimes, this intracluster distance is also referred to as inertia for that clus-

ter. It is simply the summation of all the distances. The lower the value of iner-

tia, the better the cluster is.

 Intercluster sum of squares—This metric is used to measure the distance between

centroids of all the clusters. To get it, we measure the distance between centroids

of all the clusters and divide it by the number of clusters to get the average value.

The bigger it is, the better the clustering is, indicating that clusters are heteroge-

neous and distinguishable from each other, as represented in figure 2.9.

Figure 2.9 Intracluster vs. intercluster distance. Both are used to measure the purity of the final

clusters and the performance of the clustering solution.

 Silhouette value—This is one of the metrics used to measure the success of clus-

tering. It ranges from –1 to +1, and a higher value is better. It measures how a

data point is similar to other data points in its own cluster as compared to other

clusters. As a first step, for each observation we calculate the average distance

from all the data points in the same cluster; let’s call it xi. Then we calculate the

average distance from all the data points in the nearest cluster; let’s call it yi. We

will then calculate the coefficient by equation 2.5:

Silhouette coefficient = (yi – xi)/ max (yi, xi) (2.5)

432.3 Centroid-based clustering

If the value of coefficient is –1, it means that the observation is in the wrong

cluster. If it is 0, the observation is very close to the neighboring clusters. If the

value of coefficient is +1, it means that the observation is at a distance from the

neighboring clusters. Hence, we would expect to get the highest value for the

coefficient to have a good clustering solution.

 Dunn index—This can also be used to measure the efficacy of the clustering. It

uses the inter- and intradistance measurements defined in the previous inter-

cluster sum of squares silhouette value sections and is given by equation 2.6:

Dunn index = min (intercluster distance)/max (intracluster distance) (2.6)

Clearly, we would strive to maximize the value of Dunn index. To achieve it, the

numerator should be as big as possible, implying that clusters are at a distance from

each other, while the denominator should be as low as possible, signifying that the

clusters are quite robust and close-packed.

2.3.3 Finding the optimum value of k

Choosing the optimum number of clusters is not easy. As I said earlier, the finest clus-

tering is when the number of clusters equals the number of observations, but as we

studied in the last section, it is not practically possible. Hence, we should provide the

number of clusters k as an input to the algorithm.

 Perhaps the most widely used method for finding the optimum value of k is the

elbow method. In this method, we calculate within the cluster sum of squares or WCSS

for different values of k. The process is the same as discussed in the last section. Then,

WCSS is plotted on a graph against different values of k. Wherever we observe a kink

or elbow, as shown in figure 2.10, we find the optimum number of clusters for the

dataset. Notice the sharp edge.

Figure 2.10 The elbow method to find the optimal number of clusters. The circle shows the

kink. However, the final number of clusters is dependent on business logic, and often we merge/

split clusters based on this. The ease of maintaining the clusters also plays a crucial role.

A
v
e
ra

g
e
 d

is
to

rt
io

n

k

Selecting k with the elbow method

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1 2 3 4 5 6 7 8 9

44 CHAPTER 2 Clustering techniques

But this does not mean that it is the final number of clusters we suggest for the busi-

ness problem. Based on the number of observations falling in each of the clusters, a

few clusters might be combined or broken into subclusters. We also consider the com-

putation cost required to create the clusters. The higher the number of clusters, the

greater the computation cost and the time required. We can also find the optimum

number of clusters using the silhouette coefficient we discussed earlier.

NOTE It is imperative that the business logic of merging a few clusters or
breaking a few clusters is explored. Ultimately, the solution has to be imple-
mented in real-world business scenarios.

With this, we have examined the nuts and bolts of k-means clustering—the mathemat-

ical concepts and the process, the various distance metrics, and determining the best

value of k .

2.3.4 Pros and cons of k-means clustering

The k-means algorithm is quite a popular and widely implemented clustering solu-

tion. The solution offers the following advantages:

 It is simple to comprehend and relatively easier to implement as compared to

other algorithms. The distance measurement calculation makes it quite intui-

tive to understand even by users from nonstatistics backgrounds.

 If the number of dimensions is large, the k-means algorithm is faster than other

clustering algorithms and creates tighter clusters. Hence, it is preferred if the

number of dimensions is quite high.

 It quickly adapts to new observations and can generalize very well to clusters of

various shapes and sizes.

 The solution produces results through a series of iterations of recalculations.

Most of the time, the Euclidean distance metric is used, which makes it less

computationally expensive. It also ensures that the algorithm surely converges

and produces results.

K-means is widely used for real-life business problems. Though there are clear advan-

tages of k-means clustering, we do face certain challenges with the algorithm:

 Choosing the optimum number of clusters is not easy. We should provide it as

an input. With different values of k , the results will be completely different. The

process of choosing the best value of k is explored in the previous section.

Exercise 2.2

Answer these questions to check your understanding:

1 K-means clustering does not require the number of clusters as an input. True
or False?

2 KNN and k-means clustering are the same thing. True or False?

3 Describe one possible process to find the optimal value of k.

452.3 Centroid-based clustering

 The solution is dependent on the initial values of centroids. Since the centroids

are initialized randomly, the output will be different with each iteration. Hence,

it is advisable to run multiple versions of the solution and choose the best one.

 The algorithm is quite sensitive to outliers. Outliers can mess up the final

results, and hence it is imperative that we treat outliers before starting with clus-

tering. We can also implement other variants of the k-means algorithm, like k-

modes clustering, to deal with the problem of outliers. We discuss dealing with

outliers in section 11.4.4 of chapter 11. You can refer to it if you want to know

how to deal with outliers.

 Since the basic principle of k-means clustering is to calculate the distance, the

solution is not directly applicable to categorical variables. In other words, we

cannot use categorical variables directly since we can calculate the distance

between numeric values but cannot perform mathematical calculations on cate-

gorical variables. To resolve this, we can convert categorical variables to

numeric ones using one-hot encoding. We discuss dealing with categorical vari-

ables in section 11.4.2 of chapter 11. You can refer to it if you want to know how

to deal with categorical variables.

Despite these problems, k-means clustering is one of the most used clustering solu-

tions due to its simplicity and ease of implementation. There are different implemen-

tations of k-means algorithms like k-median, k-medoids, etc., which are sometimes

used to resolve the problems faced:

 As the name suggests, k-median clustering is based on the medians of the dataset

as compared to the centroid in k-means. This increases the amount of computa-

tion time as the median can be found only after the data has been sorted. But at

the same time, k-means is sensitive to outliers whereas k-median is less affected

by them.

 K-medoids clustering is one of the variants of the k-means algorithm. Medoids are

similar to means, except they are always from the same dataset and are imple-

mented when it is difficult to get means, like with images. A medoid can be

thought of as the most central point in a cluster that is least dissimilar to all the

other members in the cluster. K-medoids choose the actual observations as the

centers as compared to k-means, where the centroids may not even be part of

the data. It is less sensitive to outliers as compared to the k-means clustering

algorithm.

There are other versions too, including k-means++, mini-batch k-means, and others.

Generally, in the industry, k-means is used for most of the clustering solutions. You can

explore other options like k-means++, mini-batch k-means, etc., if the results are not

desirable or if the computation is taking a lot of time. Moreover, having different dis-

tance measurement metrics may produce different results for the k-means algorithm.

 This section concludes our discussion on the k-means clustering algorithm. It is

time to hit the lab and develop actual Python code!

46 CHAPTER 2 Clustering techniques

2.3.5 K-means clustering implementation using Python

We will now create a Python solution for k-means clustering. In this case, we are using

the dataset from the link at GitHub at https://mng.bz/lYq2. This dataset has informa-

tion about the features of four models of cars. Based on the features of the car, we are

going to group them into different clusters:

1 Import the libraries and the dataset into a dataframe. Here, vehicles.csv is

the input data file. If the data file is not in the same folder as the Jupyter note-

book, you would have to provide the complete path to the file. dropna is used to

remove the missing values, if any:

import pandas as pd
vehicle_df = pd.read_csv('vehicle.csv').dropna()

2 Perform some initial checks on the data, like shape, info, top five rows, distribu-

tion of classes, etc. This is to ensure that we have loaded the complete dataset

and there is no corruption while loading the dataset. The Shape command will

give the number of rows and columns in the data, info will describe all the vari-

ables and their respective types, and head will display the first five rows. The

value_counts displays the distribution for the class variable. Or, in other

words, value_counts returns the count of the unique values:

vehicle_df.shape
vehicle_df.info()
vehicle_df.head()
pd.value_counts(vehicle_df['class'])

3 Generate two plots for the variable class. The dataset has more examples from

car while for bus and van it is balanced data. I used the matplotlib library to

plot these graphs. The outputs of the plots are as follows (see figure 2.11):

import matplotlib.pyplot as plt
%matplotlib inline
pd.value_counts(vehicle_df["class"]).plot(kind='bar')
pd.value_counts(vehicle_df['class']).hist(bins=300)

Figure 2.11 Two plots for the variable class

https://mng.bz/lYq2

472.3 Centroid-based clustering

4 Check for any missing data points in the dataset. There are no missing data

points in our dataset, as we have already dealt with them:

vehicle_df.isna().sum()

NOTE We cover the methods to deal with missing values in section 11.4.3 of
chapter 11 as dropping the missing values is generally not the best approach.

5 Standardize the dataset. It is a good practice to standardize the dataset for clus-

tering. It is important, as the different dimensions might be on a different scale,

and one dimension may dominate the computation of distance if its values are

naturally much larger than other dimensions. This is done using the Standard-

Scaler() function. Refer to the appendix to examine different scaling

techniques:

vehicle_df_1 = vehicle_df.drop('class', axis=1)
from scipy.stats import zscore
vehicle_df_1_z = vehicle_df_1.apply(zscore)
from sklearn.preprocessing import StandardScaler
import umpy as np
sc = StandardScaler()
X_standard = sc.fit_transform(vehicle_df_1)

6 Have a quick look at the dataset by generating a scatter plot. The plot displays

the distribution of all the data points we have created as X_standard in the last

step (see figure 2.12):

plt.scatter(X_standard[:,0], X_standard[:,1])
plt.show()

7 Perform k-means clustering. First, we have to select the optimum number of

clusters using the elbow method. From the sklearn library, we import KMeans.

In a for loop, we iterate for the values of clusters from 1 to 10. In other words,

the algorithm will create between 1 and 10 clusters and will then generate the

results for us to choose the optimal value of k .

Figure 2.12 A scatter plot of the dataset

48 CHAPTER 2 Clustering techniques

In the following code snippet, the model object contains the output of the k-

means algorithm, which is then fit on the X_standard generated in the last step.

Here, Euclidean distance has been used as a distance metric (see figure 2.13):

from sklearn.cluster import KMeans

from scipy.spatial.distance import cdist

clusters=range(1,10)

meanDistortions=[]

for k in clusters:

 model=KMeans(n_clusters=k)

 model.fit(X_standard)

 prediction=model.predict(X_standard)

 meanDistortions.append(sum(np.min(cdist(X_standard,

model.cluster_centers_, 'euclidean'), axis=1)) / X_standard

 .shape[0])

plt.plot(clusters, meanDistortions, 'bx-')

plt.xlabel('k')

plt.ylabel('Average distortion')

plt.title('Selecting k with the Elbow Method')

Figure 2.13 K-means clustering

8 As we can observe, the optimal number of clusters is three. It is the point where

we can observe a sharp kink in the graph. We will continue with k-means clus-

tering with the number of clusters as three. While there is nothing special about

the number 3 here, it is best suited for this dataset. random_state is a parame-

ter that is used to determine random numbers for centroid initialization. We set

it to a value to make randomness deterministic. If you want to repeat the same

results again, use the same random state number. It acts like a seed number:

kmeans = KMeans(n_clusters=3, n_init = 15, random_state=2345)
kmeans.fit(X_standard)

Selecting the values of k with the elbow method for k-means clustering

A
v
e
ra

g
e
 d

is
to

rt
io

n

k

4.00

3.75

3.50

3.25

3.00

2.75

2.50

2.25

1 2 3 4 5 6 7 8 9

492.3 Centroid-based clustering

9 Get the centroids for the clusters:

centroids = kmeans.cluster_centers_
centroids

10 Now we use the centroids so that they can be profiled by the columns:

centroid_df = pd.DataFrame(centroids, columns = list(X_standard))

11 We will now create a dataframe only for the purpose of creating the labels,

and then we convert it into categorical variables:

dataframe_labels = pd.DataFrame(kmeans.labels_ , columns =
list(['labels']))

dataframe_labels['labels'] =
dataframe_labels['labels'].astype('category')

12 In this step, we join the two dataframes:

dataframe_labeled = vehicle_df_1.join(dataframe_labels)

13 A groupby is done to create a data frame required for the analysis:

dataframe_analysis = (dataframe_labeled.groupby(['labels'] ,
axis=0)).head(1234)

dataframe_labeled['labels'].value_counts()

14 Now we create a visualization for the clusters we have defined. This is done

using the mpl_toolkits library. The logic is simple to understand. The data

points are colored as per the respective labels. The rest of the steps are related

to the display of the plot by adjusting the label, title, ticks, etc. Since it is not

possible to plot all 18 variables in the plot, we have chosen 3 variables to show in

the plot (see figure 2.14):

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(8, 6))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=20, azim=60)
kmeans.fit(vehicle_df_1_z)
labels = kmeans.labels_
ax.scatter(vehicle_df_1_z.iloc[:, 0], vehicle_df_1_z.iloc[:, 1],

vehicle_df_1_z.iloc[:, 3],c=labels.astype(np.float),
edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Length')
ax.set_ylabel('Height')
ax.set_zlabel('Weight')
ax.set_title('3D plot of KMeans Clustering on vehicles dataset')

We can also test the preceding code with multiple other values of k. We have created

the code with different values of k. In the interest of space, we have put the code for

testing with different values of k at the GitHub location.

50 CHAPTER 2 Clustering techniques

NOTE Exploratory data analysis holds the key to a robust machine learning
solution and a successful project. In the subsequent chapters, we will create
detailed exploratory data analyses for datasets.

In the preceding example, we first did a small exploratory analysis of the dataset. This

was followed by identifying the optimum number of clusters, which in this case comes

out to be three. Then we implemented k-means clustering. You are expected to iterate

the k-means solution with different initializations and compare the results, iterate with

different values of k, and visualize to analyze the movements of data points.

 Centroid-based clustering is one of the most recommended solutions due to its less

complicated logic, ease of implementation, flexibility, and trouble-free maintenance.

Whenever we require clustering as a solution, mostly we start with creating a k-means

clustering solution that acts as a benchmark. The algorithm is highly popular and gen-

erally one of the first solutions utilized for clustering. Then we test and iterate with

other algorithms.

2.4 Connectivity-based clustering

“Birds of a feather flock together” is the principle followed in connectivity-based clus-

ters. The core concept is that objects that are connected with each other are similar to

each other. Hence, based on the connectivity between these objects, they are grouped

into clusters. An example of such a representation is shown in figure 2.15, where we

can iteratively group observations. As an example, we are initiating with all things,

dividing into living and nonliving, and so on. Such representation is known as a den-

drogram. Since there is a tree-like structure, connectivity-based clustering is sometimes

referred to as hierarchical clustering.

Compactness

Circularity

ra
d

iu
s
_

ra
tio

3D plot of k-means clustering on vehicles dataset

Figure 2.14 K-means clustering for

the vehicles dataset

512.4 Connectivity-based clustering

Hierarchical clustering fits nicely into human intuition and, hence, is easy to compre-

hend. Unlike k-means clustering, in hierarchical clustering we do not have to input

the number of final clusters, but the method does require a termination condition

(i.e., when the clustering should stop). At the same time, hierarchical clustering does

not suggest the optimum number of clusters. From the hierarchy/dendrogram gener-

ated, we have to choose the best number of clusters ourselves. We will explore this

more when we create the Python code for it in subsequent sections.

 Figure 2.16 shows an example of hierarchical clustering. Here, the first node is the

root, which is then iteratively split into nodes and subnodes. Whenever a node cannot

be split further, it is called a terminal node or leaf.

Figure 2.16 Hierarchical clustering has a root that splits into nodes and subnodes. A node that cannot be split

further is called the leaf. In the bottom-up approach, a merging of the leaves will take place.

Since there is more than one process or logic to merge the observations into clusters,

we can generate a large number of dendrograms, which is given by equation 2.7:

Number of dendrograms = (2n – 3)!/[2(n–2) (n – 2)!] (2.7)

where n is the number of observations or the leaves. So, if we have only two observa-

tions, we can have only one dendrogram. If we have 5 observations, we can have 105

Living things Nonliving things

Animals Plants Moveable Immoveable

Land Air …Water

All things

Figure 2.15 Hierarchical clustering

utilizes grouping similar objects

iteratively. Such representation is

known as a dendrogram.

Root

Internal
node

Internal
node

Internal
node

Leaf Leaf

Internal
node

Leaf Leaf

Leaf Leaf

Splitting

Splitting Splitting

52 CHAPTER 2 Clustering techniques

dendrograms. Hence, based on the number of observations, we can generate a lot of

dendrograms.

 Hierarchical clustering can be further classified based on the process used to cre-

ate the grouping of observations, which we explore next.

2.4.1 Types of hierarchical clustering

Based on the grouping strategy, hierarchical clustering can be subdivided into two

types: agglomerative clustering and divisive clustering (see table 2.2).

Let’s explore the meaning of the greedy approach first. The greedy approach or greedy

algorithm is any algorithm that makes the best choice at each step without considering

the effect on future states. In other words, we live in the moment and choose the best

option from the available choices at that moment. The current choice is independent

of the future choices, and the algorithm will solve the subproblems later. The greedy

approach may not provide the most optimal solution but generally provides a locally

optimal solution that is close to the best solution in a reasonable amount of time. Hier-

archical clustering follows this greedy approach while merging or splitting at a node.

 We next examine the steps followed in the hierarchical clustering approach:

1 As shown in figure 2.17, let us say we have five observations in our dataset: 1, 2,

3, 4, and 5.

2 In this step, observations 1 and 2 are grouped into one and 4 and 5 are grouped

into one; 3 is not grouped in any one.

3 In this step, we group the output of 4,5 in the last step and observation 3 into

one cluster.

4 The output from step 3 is grouped with the output of 1,2 as a single cluster.

In this approach, from left to right, we have an agglomerative approach, and from

right to left, a divisive approach is represented. In an agglomerative approach, we

merge the observations, while in a divisive approach, we split the observations. We can

Table 2.2 Different types of hierarchical clustering

Serial no. Agglomerative clustering Divisive clustering

1 Bottom-up approach. Top-down approach.

2 Each observation creates its own cluster

and then merging takes place as the

algorithm goes up.

We start with one cluster and then observa-

tions are iteratively split to create a tree-like

structure.

3 Greedy approach is followed to merge (the

greedy approach is described below).

Greedy approach is followed to split.

4 An observation will find the best pair to

merge and the process completes when

all the observations have merged with

each other.

All the observations are taken at the start and

then, based on division conditions, splitting

takes place until all the observations are

exhausted or the termination condition is met.

532.4 Connectivity-based clustering

use both agglomerative and divisive approaches for hierarchical clustering. Divisive

clustering is an exhaustive approach and sometimes might take more time than the

other.

 Similar to k-means clustering, the distance metric used to measure plays a significant

role here. We are aware of and understand how to measure the distance between data

points, but there are multiple methods to define that distance, which we study next.

2.4.2 Linkage criterion for distance measurement

We can use Euclidean distance, Manhattan distance, Chebyshev distance, and others to

measure the distance between two observations. At the same time, we can employ var-

ious methods to define that distance. Based on this input criterion, the resultant clus-

ters will be different. The various methods to define the distance metric are as follows:

 Nearest neighbors or single linkages use the distance between the two nearest points

in different clusters. The distance between the closest neighbors in distinct clus-

ters is calculated, and this is used to determine the next split/merging. It is

done by an exhaustive search among all the pairs.

 Farthest neighbor or complete linkage is the opposite of the nearest neighbor

approach. Here, instead of taking the nearest neighbors, we concentrate on the

most distant neighbors in different clusters. In other words, the distance

between the clusters is calculated by the greatest distance between two objects.

 Group average linkage calculates the average of the distances between all the pos-

sible pairs of objects in two different clusters.

 The Ward linkage method aims to minimize the variability of the clusters that are

getting merged into one.

Step 1 Step 2 Step 3 Step 4

Step 4 Step 3 Step 2 Step 1

Agglomerative clustering

Divisive clustering

1,2

4,5

3,4,5

1,2,3,4,5

1

2

3

4

5

Figure 2.17 Steps followed in hierarchical clustering. From left to right, we have

agglomerative clustering (merging of the nodes), while from right to left, we have divisive

clustering (splitting of the nodes).

54 CHAPTER 2 Clustering techniques

We can use these options of distance metrics while we are developing the actual code

for hierarchical clustering and compare the accuracies to determine the best distance

metrics for the dataset. During algorithm training, the algorithm merges the observa-

tions, which will minimize the linkage criteria chosen. We can visualize the various

linkages in figure 2.18.

NOTE Such inputs to the algorithm are referred to as hyperparameters.
These are the values we feed to the algorithm to generate the results as per
our requirement, and they act as our control on the algorithm. An example
of a hyperparameter is k in k-means clustering.

Figure 2.18 Single linkage is for closest neighbors (left); complete linkage is for farthest neighbors (center); and

group average is for the average of the distance between clusters (right).

With this, we have understood the working mechanisms in hierarchical clustering. But

we have still not addressed the mechanism to determine the optimum number of clus-

ters using hierarchical clustering, which we examine next.

2.4.3 Optimal number of clusters

Recall that in k-means clustering, we have to give the number of clusters as an input to

the algorithm. We use the elbow method to determine the optimum number of clus-

ters. In the case of hierarchical clustering, we do not have to specify the number of

clusters to the algorithm, but we still have to identify the number of final clusters we

wish to have. We use a dendrogram to answer that question.

 Let us assume that we have 10 data points in total at the bottom of the chart, as

shown in figure 2.19. The clusters are merged iteratively until we get the one final

cluster at the top. The height of the dendrogram at which two clusters get merged

with each other represents the respective distance between the said clusters in the

vector-space diagram.

 From a dendrogram, the number of clusters is given by the number of vertical

lines being cut by a horizontal line. The optimum number of clusters is given by the

number of vertical lines in the dendrogram cut by a horizontal line such that it inter-

sects the tallest of the vertical lines. Or if the cut is shifted from one end of the vertical

line to another, the length covered is the maximum. A dendrogram utilizes branches

of clusters to show how closely various data points are related to each other. In a

552.4 Connectivity-based clustering

dendrogram, clusters that are located at the same height level are more closely related

than clusters that are located at different height levels.

 In the example shown in figure 2.19, we have shown three potential cuts: AB, PQ,

and XY. If we take a cut above AB, it will result in two very broad clusters, while below

PQ will result in nine clusters that will become difficult to analyze further.

 Here, the distance between X and Y is more than between A and B and between P

and Q. So we can conclude that the distance between X and Y is the maximum, and

hence, we can finalize that as the best cut. This cut intersects at five distinct points;

hence, we should have five clusters. The height of the cut in the dendrogram is similar

to the value of k in k-means clustering. In k-means clustering, k determines the num-

ber of clusters. In hierarchical clustering, the best cut determines the number of clus-

ters we wish to have.

 Similar to k-means clustering, the final number of clusters is not dependent on the

choice from the algorithm only. Business acumen and pragmatic logic play a vital role

in determining the final number of clusters. Recall that one of the important attri-

butes of clusters is their usability, which we discussed in section 2.2.

 Sometimes we also use cophenetic correlation coefficient to measure how well the

dendrogram represents the actual pairwise distance between the points. It compares

the cophenetic distance, which is the height at which two points merged first in the

dendrogram, with the original dissimilarity between the points.

 There is one more index known as the Calinski-Haranasz index. It measures the

ratio of between-cluster dispersion to within-cluster dispersion. A higher value means

better clustering, and hence we choose the optimal number of clusters to maximize

this index.

A

B
X

Y

P
Q

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

2 10 8 9 1 4 3 6 75

Figure 2.19 Dendrogram to identify the optimum number of clusters. The distance between

X and Y is more than between A and B and between P and Q; hence, we choose that as the

cut to create clusters and the number of clusters chosen is five. The x-axis represents the

clusters, while the y-axis represents the distance (dissimilarity) between two clusters.

56 CHAPTER 2 Clustering techniques

2.4.4 Pros and cons of hierarchical clustering

Hierarchical clustering is a strong clustering technique and is quite popular, too. Sim-

ilar to k-means, it also uses distance as a metric to measure similarity. At the same time,

there are a few challenges with the algorithm. The advantages of hierarchical cluster-

ing are as follows:

 Perhaps the biggest advantage of hierarchical clustering is the reproducibility

of results. Recall in k-means clustering, the process starts with random initializa-

tion of centroids giving different results. In hierarchical clustering, we can

reproduce the results.

 In hierarchical clustering, we do not have to input the number of clusters to

segment the data.

 The implementation is easy to implement and comprehend. Since it follows a

tree-like structure, it is explainable to users from nontechnical backgrounds.

 The dendrogram generated can be interpreted to give a very good understand-

ing of the data with a visualization.

At the same time, we do face some challenges with hierarchical clustering algorithms,

which are as follows:

 The biggest challenge we face with hierarchical clustering is the time taken to

converge. The time complexity for k-means is linear, while for hierarchical clus-

tering it is quadratic. For example, if we have “n” data points, then for k-means

clustering the time complexity will be O(n), while for hierarchical clustering it

is O(n3).

TIP Refer to the appendix if you want to study O(n).

 Since the time complexity is O(n3), it is a time-consuming task. Moreover, the

memory required to compute is at least O(n2), making hierarchical clustering

quite a time-consuming and memory-intensive process. And this is the problem

even if the dataset is medium. The computation required might not be a chal-

lenge if we are using high-end processors, but it surely can be a concern for reg-

ular computers.

 The interpretation of dendrograms at times can be subjective; hence due dili-

gence is required while interpreting dendrograms. The key to interpreting a

Exercise 2.3

Answer these questions to check your understanding:

1 What is the greedy approach used in hierarchical clustering?

2 Complete linkage is used for finding distances for closest neighbors. True or
False?

3 What is the difference between group linkage and ward linkage?

4 Describe the process to find the most optimal value of k.

572.4 Connectivity-based clustering

dendrogram is to focus on the height at which any two data points are connected.

It can be subjective, as different analysts can decipher different cuts and try to

prove their methodology. Hence, it is advisable to interpret the results in the

light of mathematics and marry the results with real-world business problems.

 Hierarchical clustering cannot undo the previous steps it has done. Even if we

feel that a connection made is not proper and should be rolled back, there is

no mechanism to remove the connection.

 The algorithm is very sensitive to outliers and messy datasets. The presence of

outliers, NULL, missing values, duplicates, etc., makes a dataset messy. Hence

the resultant output might not be proper or what we expected.

But despite all the challenges, hierarchical clustering is one of the most widely used

clustering algorithms. Generally, we create both k-means clustering and hierarchical

clustering for the same dataset to compare the results of the two. If the number of

clusters suggested and the distribution of respective clusters look similar, we get more

confident about the clustering methodology used.

 We have covered the theoretical background of hierarchical clustering. It is time to

take action and jump into Python for coding.

2.4.5 Hierarchical clustering case study using Python

We will now create a Python solution for hierarchical clustering using the same data-

set we used for k-means clustering:

1 Load the required libraries and

dataset. For this, follow steps 1 to

6 we followed for the k-means

algorithm.

2 Next, we create hierarchical clus-

tering using three linkage meth-

ods: average, ward, and

complete. Then the clusters will

be plotted. The input to the

method is the X_Standard vari-

able, the linkage method used,

and the distance metric. Then,

using the matplotlib library, we

plot the dendrogram. In the fol-

lowing code snippet, simply

change the method from “aver-

age” to “ward” and “complete”

and get the respective results (see

figure 2.20):

from scipy.cluster.hierarchy import dendrogram, linkage
Z_df_average = linkage(X_standard, 'average', metric='euclidean')
Z_df_average.shape

Figure 2.20 Hierarchical clustering using

average, ward, and complete linking methods

(top to bottom, respectively)

58 CHAPTER 2 Clustering techniques

plt.figure(figsize=(30, 12))
dendrogram(Z_df_average)
plt.show()

3 We now want to choose the number of

clusters we wish to have. For this pur-

pose, let’s re-create the dendrogram by

subsetting the last 10 merged clusters.

We have chosen 10 as it is generally an

optimal choice; I advise you to test with

other values too (see figure 2.21):

dendrogram(
 Z_df_complete,
 truncate_mode='lastp', p=10,)
plt.show()

4 We observe that the most optimal distance is 10.

5 Cluster the data into different groups. By using the logic described in the last

section, the number of optimal clusters is going to be four:

from scipy.cluster.hierarchy import fcluster
hier_clusters = fcluster(Z_df_complete, max_distance,

criterion='distance')
hier_clusters
len(set(hier_clusters))

6 Plot the distinct clusters using the matplotlib library. In the print version of

the book, you will not see different colors. The output of the Python code will

have the colors; I advise that you run the code to appreciate the output. The

same output is available in the GitHub repository (see figure 2.22):

plt.scatter(X_standard[:,0], X_standard[:,1], c=hier_clusters)
plt.show()

Figure 2.21 A dendrogram subsetting

the last 10 merged clusters

Figure 2.22 A plot of the distinct

clusters using the matplotlib library

592.4 Connectivity-based clustering

7 For different values of distance, the number of clusters will change, and the

plot will look different. We are showing different results for distances of 5, 15,

and 20 and different numbers of clusters generated for each iteration. Figure

2.23 shows that we get completely different results for different values of dis-

tances as we move from left to right. We should be cautious when we choose the

value of the distance, and sometimes we might have to iterate a few times to get

the best value.

Figure 2.23 The number of clusters using different values of distance

Using hierarchical clustering, we segment the data on the left side to the one on the

right side of figure 2.24. The left side represents the raw data, while on the right, we

have a representation of the clustered dataset. In the print version of the book, you

won’t see the different colors. The output of the Python code will have the colors. The

same output is available at the GitHub repository.

Figure 2.24 Segmenting the data using hierarchical clustering

Hierarchical clustering is a robust method and is highly recommended. Along with k-

means, it creates a great foundation for clustering-based solutions. Most of the time, at

least these two techniques are used when we create clustering solutions, and then we

move on to iterate with other methodologies.

60 CHAPTER 2 Clustering techniques

2.5 Density-based clustering

We have studied k-means in the earlier sections. Recall how it uses a centroid-based

method to assign a cluster to each of the data points. If an observation is an outlier,

the outlier point pulls the centroid toward itself and is also assigned a cluster like a

normal observation. These outliers do not necessarily bring information to the cluster

and can affect other data points disproportionally but are still made a part of the clus-

ter. Moreover, getting clusters of arbitrary shapes, as shown in figure 2.25, is a chal-

lenge with the k-means algorithm. Density-based clustering methods solve the

problem.

Figure 2.25 DBSCAN is highly recommended for irregular-shaped clusters. With k-means, we generally get

spherical clusters; DBSCAN can resolve it.

In the density-based method, the clusters are identified as the areas that have a higher

density as compared to the rest of the dataset. In other words, given a vector-space dia-

gram where the data points are represented, a cluster is defined by adjacent regions

or neighboring regions of high-density points. This cluster will be separated from

other clusters by regions of low-density points. The observations in the sparse areas or

separating regions are considered noise or outliers in the dataset. A few examples of

density-based clustering are shown in figure 2.25.

 We mentioned two terms: neighborhood and density. To understand density-based

clustering, we will study these terms in the next section.

2.5.1 Neighborhood and density

Imagine we represent data observations in a vector-space, and we have a point P. We

now define the neighborhood for this point P. The representation is shown in figure

2.26. For a point P we have defined an —neighborhoods for it that are the points

equidistant from P. In a 2D space, it is represented by a circle; in a 3D space it is a

sphere; and for a n -dimensional space, it is n -sphere with center P and radius  . This

defines the concept of neighborhood.

612.5 Density-based clustering

Figure 2.26 Representation of data points in a vector-space diagram. On the right-side we have a point P, and the

circle drawn is of radius . So, for  > 0, the neighborhood of P is defined by the set of points that are at less than

or equal to  distance from the point P.

Now let’s explore the term density. Recall density is mass divided by volume (mass/

volume). The higher the mass, the higher the density, and the lower the mass, the

lower the density. Conversely, the lower the volume, the higher the density, and vice

versa.

 In the previous context, mass is the number of points in the neighborhood. In fig-

ure 2.26 we can observe the effect of  on the number of data points or the mass.

When it comes to volume, in the case of 2D space, volume is r 2, while for a sphere

that is 3D, it is 4/3 r 3. For spheres of n -dimensions, we can calculate the respective

volume as per the number of dimensions, which will be  times a numerical constant

raised to the number of dimensions.

 So, in the two cases shown in figure 2.27, for a point P, we can get the number of

points (mass) and volumes, and then we can calculate the respective densities. But the

absolute values of these densities mean nothing to us; rather how they are similar (or

different) from nearby areas is what’s important. The points that are in the same

neighborhood and have similar densities can be grouped into one cluster.

Figure 2.27 The effect of radius  . On the left side, the number of points is more than on the right side. So the

mass of the right side is less, since it contains a smaller number of data points.

In an ideal case scenario, we wish to have highly dense clusters with a maximum num-

ber of points. In the two cases shown in figure 2.28, we have a less dense cluster

depicted on the left and a high-dense one on the right.

ε

ε

P

ε

ε

P

ε

ε

P

62 CHAPTER 2 Clustering techniques

Figure 2.28 Denser clusters are preferred over less dense ones. Ideally, a dense cluster, with a maximum number

of data points, is what we aim to achieve from clustering.

From the preceding discussion, we can conclude that

 If we increase the value of  , we will get a higher volume but not necessarily a higher

number of points (mass). It depends on the distribution of the data points.

 If we decrease the value of  , we will get a lower volume but not necessarily a lower

number of points (mass).

These are the fundamental points we adhere to. Hence, it is imperative that we choose

clusters that have high density and cover the maximum number of neighboring points.

2.5.2 DBSCAN clustering

DBSCAN clustering is one of the highly recommended density-based algorithms. It

clusters the data observations that are closely packed in a densely populated area but

does not consider the outliers in low-density regions. Unlike k-means, we do not spec-

ify the number of clusters, and the algorithm is able to identify irregular-shaped clus-

ters, whereas k-means generally proposes spherical-shaped clusters. Similar to

hierarchical clustering, it works by connecting the data points but with the observa-

tions that satisfy the density criteria or the threshold value.

NOTE DBSCAN was proposed in 1996 by Martin Ester, Hans-Peter Kriegal,
Jörg Sander, and Xiaowei Xu. The algorithm was given the Test of Time
award in 2014 at ACM SIGKDD. The paper can be accessed at https://
mng.bz/BXv1.

DBSCAN works on the concepts of neighborhood we discussed in the last section. We

will now dive deeper into the working methodology and building blocks of DBSCAN.

NUTS AND BOLTS OF DBSCAN CLUSTERING

Let’s now examine the core building blocks of DBSCAN clustering. We know it is a

density-based clustering algorithm, and hence the neighborhood concept is applica-

ble here.

 Say we have a few data observations that we need to cluster. We also locate a data

point P. Then we can easily define two hyperparameter terms:

 The radius of the neighborhood around P, known as  , which we discussed in

the last section.

ε

ε

P

ε

ε

P

https://mng.bz/BXv1
https://mng.bz/BXv1

632.5 Density-based clustering

 The minimum number of points we wish to have in the neighborhood of P or,

in other words, the minimum number of points that are required to create a

dense region. This is referred to as minimum points (minPts). It is one of the

parameters we can input by applying a threshold on minPts.

Based on these concepts, we can classify the observations into three broad categories:

core points, border or reachable points, and outliers:

 Core points—Any data point x can be termed as a core point if at least minPts are

within  distance of it (including x itself), shown as squares in figure 2.29. They

are the building blocks of our clusters and are called core points. We use the

same value of radius () for each point and hence the volume of each neighbor-

hood remains constant. But the number of points will vary and hence the mass

varies. Consequently, the density varies as well. Since we put a threshold using

minPts, we are putting a limit on density. So we can conclude that core points ful-

fill the minimum density threshold requirement. It is imperative to note that we

can choose different values of  and minPts to iterate and fine-tune the clusters.

 Border points or reachable points—A point that is not a core point in the clusters is

called a border point, shown as filled circles in figure 2.29.

A point y is directly reachable from x if y is within  distance of core point x. A

point can only be approached from a core point, and it is the primary condition

or rule to be followed. Only a core point can reach a noncore point, and the

opposite is not true. In other words, a noncore point can only be reached by

other core points; it cannot reach anyone else. In figure 2.29, border points are

represented as dark circles.

To understand the process better, we have to understand the term density-

reachable or connectedness. In figure 2.30, we have two core points: X and Y. We

can directly go from X to Y. Point Z is not in the neighborhood of X but is in the

neighborhood of Y. So we cannot directly reach Z from X, but we can surely

Noise points

Core points

Border points

minPts = 3

radius = ε

ε

Figure 2.29 Core points are shown

as squares; border points are shown

as filled circles, while noise is

unfilled circles. Together, these

three are the building blocks for

DBSCAN clustering.

64 CHAPTER 2 Clustering techniques

reach Z from X through Y or, in other words, using the neighborhood of Y, we

can travel to Z from X. Conversely, we cannot go from Z to X since Z is the bor-

der point and, as described earlier, we cannot travel from a border point.

Figure 2.30 X and Y are the core points, and we can travel from X to Y. Though Z is not in the immediate

neighborhood of X, we can still reach Z from X through Y. This is the core concept of density-connected points used

in DBSCAN clustering.

 Outliers—All the other points are outliers. In other words, if it is not a core point

or is not a reachable point, it is an outlier, shown as unfilled circles in figure

2.29. They are not assigned any cluster.

STEPS IN DBSCAN CLUSTERING

The steps in DBSCAN clustering are as follows:

1 We start with assigning values for  and minPts required to create a cluster.

2 We start with picking a random point, let’s say P, which is not yet given any label

(i.e., it has not been analyzed and assigned any cluster).

3 We then analyze the neighborhood for P. If it contains a sufficient number of

points (i.e., higher than minPts), then the condition is met to start a cluster. If

so, we tag the point P as the core point. If a point cannot be recognized as a core

point, we will assign it the tag of outlier or noise. We should note this point can be

made a part of a different cluster later. Then we go back to step 2.

4 Once this core point P is found, we start creating the cluster by adding all

directly reachable points from P and then increase this cluster size by adding

more points directly reachable from P. Then we add all the points to the cluster,

which can be included using the neighborhood by iterating through all these

points. If we add an outlier point to the cluster, the tag of the outlier point is

changed to a border point.

5 This process continues until the density cluster is complete. We then find a new

unassigned point and repeat the process.

6 Once all the points have been assigned to a cluster or called an outlier, we stop

our clustering process.

X

Z

Y

Core points

Border points

X

Z

Y
X

Z

Y

652.5 Density-based clustering

There are iterations in the process. Then, once the clustering concludes, we utilize

business logic to either merge or split a few clusters.

Now we are clear with the process of DBSCAN clustering. Before creating the Python

solution, we will examine the advantages and disadvantages of the DBSCAN algorithm.

PROS AND CONS OF DBSCAN CLUSTERING

DBSCAN has the following advantages:

 Unlike k-means, we need not specify the number of clusters to DBSCAN.

 The algorithm is quite a robust solution for unclean datasets. Unlike other algo-

rithms, it can deal with outliers effectively.

 We can determine irregular-shaped clusters too. Arguably, this is the biggest

advantage of DBSCAN clustering.

 Only the input of radius and minPts is required by the algorithm.

DBSCAN has the following challenges:

 The differentiation in clusters is sometimes not clear using DBSCAN. Depending

on the order of processing the observations, a point can change its cluster. In

other words, if a border point P is accessible by more than one cluster, P can

belong to either cluster, which is dependent on the order of processing the data.

 If the difference in densities among different areas of the datasets is very big,

then the optimum combination of  and minPts will be difficult to determine,

and hence DBSCAN will not generate effective results.

 The distance metric used plays a highly significant role in clustering algorithms,

including DBSCAN. Arguably, the most common metric used is Euclidean dis-

tance, but if the number of dimensions is quite large, then it becomes a chal-

lenge to compute.

 The algorithm is very sensitive to different values of  and minPts. Sometimes

finding the most optimum value becomes a challenge.

PYTHON SOLUTION FOR DBSCAN CLUSTERING

We will use the same dataset we have used for k-means and hierarchical clustering:

1 Load the libraries and dataset up to step 6 in the k-means algorithm.

Exercise 2.4

Answer these questions to check your understanding:

1 Compare and contrast the importance of DBSCAN clustering with respect to k-
means clustering.

2 A noncore point can reach a core point and vice versa is also true. True or
False?

3 Explain the significance of neighborhood and minPts.

4 Describe the process to find the most optimal value of k.

66 CHAPTER 2 Clustering techniques

2 Import additional libraries:

from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize
from sklearn.neighbors import NearestNeighbors

Here we fit the model with a value for minimum distance and radius:

db_default = DBSCAN(eps = 0.0375, min_samples = 6).fit(X_standard)
labels = db_default.labels_

The number of distinct clusters is 1:

list(set(labels))

3 We are not getting any results for clustering here. In other words, there will not

be any logical results of clustering since we have not provided the optimal val-

ues for minPts and  .

4 Now we will find the optimum values for  (see figure 2.31). For this, we will cal-

culate the distance to the nearest points for each point and then sort and plot

the results. Wherever the curvature is maximum, it is the best value for  . For

minPts, generally minPts  d + 1 where d is the number of dimensions in the

dataset:

neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X_standard)
distances, indices = nbrs.kneighbors(X_standard)
distances = np.sort(distances, axis=0)
distances = distances[:,1]
plt.plot(distances)

Figure 2.31 Finding the optimum value of 

NOTE See the paper at https://iopscience.iop.org/article/10.1088/1755-
1315/31/1/012012/pdf for further study on how to choose the values of
radius for DBSCAN.

https://iopscience.iop.org/article/10.1088/1755-1315/31/1/012012/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/31/1/012012/pdf

672.6 Case study using clustering

5 The best value is coming up as 1.5, as observed in the point of defection. We will

use it and set the minPts as 5, which is generally taken as a standard:

db_default = DBSCAN(eps=1.5, min_samples=5)
db_default.fit(X_standard)
clusters = db_default.labels_

6 Now we can observe that we are getting more than one cluster:

list(set(clusters))

7 Let’s plot the clusters (see figure 2.32). In the print version of the book, you will

not see different colors. The output of the Python code will have the colors.

The same output is available at the GitHub repository:

colors = ['blue', 'red', 'orange', 'green', 'purple', 'black', 'brown',
'cyan', 'yellow', 'pink']

vectorizer = np.vectorize(lambda x: colors[x % len(colors)])
plt.scatter(X_standard[:,0], X_standard[:,1], c=vectorizer(clusters))

We have thus created a solution using DBSCAN. I advise you to compare the results

from all three algorithms. In real-world scenarios, we test the solution with multiple

algorithms, iterate with hyperparameters, and then choose the best solution.

 Density-based clustering is quite an efficient solution and, to a certain extent, is a

very effective one too. It is heavily recommended if the shape of the clusters is sus-

pected to be irregular.

 With this, we conclude our discussion on DBSCAN clustering. In the next section,

we solve a business use case on clustering. In the case study, the focus is less on techni-

cal concepts and more on business understanding and solution generation.

2.6 Case study using clustering

We will now define a case study that employs clustering as one of the solutions. The

objective of the case study is to give you a flavor of the practical and real-life business

world. This case study–based approach is also followed in job-related interviews,

Figure 2.32 Plotting the clusters

68 CHAPTER 2 Clustering techniques

wherein a case is discussed during the interview stage. I highly recommend you

understand how we implement machine learning solutions in pragmatic business

scenarios.

 A case study typically has a business problem, the dataset available, the various

solutions that can be used, the challenges faced, and the final chosen solution. We

also discuss the problems faced while implementing the solution in real-world

business.

 So let’s start our case study on clustering using unsupervised learning. In the case

study, we focus on the steps we take to solve the case study and not on the technical

algorithms, as there can be multiple technical solutions to a particular problem.

2.6.1 Business context

The industry we are considering can be retail; telecom; banking, financial services,

and insurance; aviation; healthcare; or any other industry that has a customer base.

For any business, the objective is to generate more revenue for the business and ulti-

mately increase the overall profit of the business. To increase revenue, the business

would want to have increasingly more new customers. The business would also want

the existing consumers to buy more and buy more often. So the business always strives

to keep the consumers engaged and happy and to increase their transactional value

with the business.

 For this to happen, the business must have a thorough understanding of its con-

sumer base; it must know their tastes, price points, category preferences, affinity, pre-

ferred marketing/communication channels, etc. Once the business has examined

and understood the consumer base minutely, then

 The product team can improve the product features as per the consumer’s

need.

 The pricing team can improve the price of the products by aligning them to

customers’ preferred prices. The prices can be customized for a customer, or

loyalty discounts can be offered.

 The marketing team and customer relationship team can target the consumers

with a customized offer.

 The teams can win back the consumers who are going to churn or stop buying

from the business, can enhance their spending, increase the stickiness, and

increase the customer lifetime value.

 Overall, different teams can align their offerings as per the understanding of

the consumers generated. And the end consumer will be happier, more

engaged, and more loyal to the business, leading to more fruitful consumer

engagement.

The business hence should dive deep into the consumers’ data and generate an

understanding of the base. The customer data can look like that shown in the next

section.

692.6 Case study using clustering

2.6.2 Dataset for the analysis

We take as an example an apparel retailer that has a loyalty program and that saves the

customer’s transaction details. The various (not exhaustive) data sources are shown in

figure 2.33.

Figure 2.33 Data sources for an apparel retail store

We can have store details, such as store ID, store name, city, area, number of employ-

ees, etc. We can have an item hierarchies table, which has all the details of the items

like price, category, etc. Then we can have customer demographic details like age,

gender, city, and customer transactional history. Clearly, by joining such tables, we will

be able to create a master table that will have all the details in one place.

NOTE I advise you to develop a good skill set for SQL. It is required in almost
all of the domains related to data—be it data science, data engineering, or
data visualization, SQL is ubiquitous.

Figure 2.34 is an example of a master table. This is not an exhaustive list of variables,

and the number of variables can be much larger than the ones shown. The master

table has some raw variables like Revenue, Invoices, etc., and some derived variables

like Average Transaction Value, Average Basket Size, etc.

Figure 2.34 A master table

We could also take an example of a telecom operator. In that subscriber usage, call

rate, revenue, days spent on the network, data usage, etc., will be the attributes we ana-

lyze. Hence, based on the business domain at hand, the datasets will change.

Items boughtCustID Revenue Invoices Age Gender Avg txn value Avg basket size Days since last txn City

70 CHAPTER 2 Clustering techniques

 Once we have the dataset, we generally create derived attributes from it. For exam-

ple, the average transaction value attribute is total revenue divided by the number of

invoices. We create such attributes in addition to the raw variables we already have.

2.6.3 Suggested solutions

There can be multiple solutions to the problem, some of which we include in the

following:

 We can create a dashboard to depict the major key performance indicators.

This will allow us to analyze the history and take necessary actions based on it.

But the dashboard will only show the information that we already know (to

some extent).

 We can perform data analysis using some of techniques we used in the solutions

in the earlier sections. This will solve a part of the problem and, moreover, it is

difficult to consider multiple dimensions simultaneously.

 We can create predictive models to predict if the customers are going to shop in

the coming months or are going to churn in the next X days, but this will not

solve the problem completely. To be clear, “churn” here means that the cus-

tomer no longer shops with the retailer in the next X days. Here, duration X is

defined as per the business domain. For example, for the telecom domain, X

will be less than in the insurance domain. This is due to the fact that people use

mobile phones every day, whereas in the insurance domain, most customers pay

the premium yearly. So customer interaction is less for insurance.

 We can create customer segmentation solutions wherein we group customers

based on their historical trends and attributes. This is the solution we will use to

solve this business problem.

2.6.4 Solution for the problem

Recall figure 1.9 in chapter 1, where we discussed the steps we follow in the machine

learning algorithm. Everything starts with defining the business problem and then we

move on to data discovery, preprocessing, etc. For our case study here, we will utilize a

similar strategy. We have already defined the business problem; data discovery is done

and we have completed the exploratory data analysis and the preprocessing of the

data. To create a segmentation solution using clustering, follow these steps:

1 We start with finalizing the dataset we wish to feed to the clustering algorithms.

We might have created some derived variables, treated some missing values or

outliers, etc. In the case study, we would want to know the minimum/

maximum/average values of transactions, invoices, items bought, etc. We would

be interested to know the gender and age distribution. We also would like to

know the mutual relationships between these variables, such as if women cus-

tomers use the online mode more than male customers. All of these questions

are answered as part of this step.

712.6 Case study using clustering

TIP A Python Jupyter notebook is checked in at the GitHub repository, which
provides detailed steps and code for the exploratory data analysis and data
preprocessing. Check it out!

2 We create the first solution using k-means clustering followed by hierarchical

clustering. For each of the algorithms, iterations are done by changing hyperpa-

rameters. In the case study, we will choose parameters like the number of visits,

total revenue, distinct categories purchased, online/offline transactions ratio,

gender, age, etc., as parameters for clustering.

3 A final version of the algorithm and respective hyperparameters are chosen.

The clusters are analyzed further in the light of business understanding.

4 More often, the clusters are merged or broken, depending on the size of the

observations and the nature of the attributes present in them. For example, if

the total customer base is 1 million, it will be really hard to take action on a clus-

ter of size 100. At the same time, it will be equally difficult to manage a cluster

of size 700,000.

5 We then analyze the clusters we finally have. The clusters distribution is

checked for the variables, their distinguishing factors are understood, and we

give logical names to the clusters. We can expect to see such a clustering output

as shown in figure 2.35.

Figure 2.35 Segmentation based on a few dimensions like response, life stage,

engagement, and spending patterns. The dimensions are not exhaustive, and in a

real-world business problem, the number of dimensions can be higher.

Spending patterns

Discount shoppers

High spenders

Balanced spending

Only sale shoppers
Low

re
sp

onsiv
e

Medium

re
sp

onsiv
e

Response to previous

campaigns

Overall

engagement

Life stage

Only men or only women

Family without kids

Family shoppers

Old couples

P
la

tin
u
m

 s
h
o
p
p
e
rs

P
ro

m
is

in
g
 s

h
o
p
p
e
rs

G
o
ld

 s
h
o
p
p
e
rs

N
e
w

ly
 jo

in
e
d
 c

u
st

o
m

e
rs

In
a
ct

iv
e

High

re
sp

onsiv
e

72 CHAPTER 2 Clustering techniques

In the example clusters shown, we have depicted spending patterns, responsiveness to

previous campaigns, life stage, and overall engagement as a few dimensions. Respec-

tive subdivisions of each of these dimensions are also shown. The clusters will be a log-

ical combination of these dimensions. The actual dimensions can be much higher.

 The segmentation shown in figure 2.35 can be used for multiple domains and busi-

nesses. The parameters and attributes might change, the business context may be dif-

ferent, the extent of data available might vary—but the overall approach remains

similar.

 In addition to the applications we saw in the last section, let’s examine a few use

cases here:

 Market research utilizes clustering to segment the groups of consumers into

market segments; then the groups can be analyzed better in terms of their pref-

erences. Product placement can be improved, pricing can be made tighter, and

geography selection will be more scientific.

 In the bioinformatics and medical industry, clustering can be used to group

genes into distinct categories. Groups of genes can be segmented and compari-

sons can be assessed by analyzing the attributes of the groups.

 Clustering is used as an effective data preprocessing step before we create algo-

rithms using supervised learning solutions. It can also be used to reduce the

data size by focusing on the data points belonging to a cluster.

 Clustering is utilized for pattern detection across both structured and unstruc-

tured datasets. We have already studied the case for a structured dataset. For text

data, it can be used to group similar types of documents, journals, news, etc. We

can also employ clustering to work and develop solutions for images. We will

study unsupervised learning solutions for text and images in later chapters.

 As the algorithms work on similarity measurements, clustering can be used to

segment the incoming dataset as fraud or genuine, which can be used to reduce

the number of criminal activities.

The use cases of clustering are many. We have discussed only the prominent ones.

Clustering is one of the algorithms that changes the working methodologies and gen-

erates a lot of insights around the data. It is widely used across telecom; retail; bank-

ing, financial services, and insurance; aviation; and others.

 At the same time, there are a few problems with the algorithm. We next examine

the common problems we face with clustering.

2.7 Common challenges faced in clustering

Clustering is not a completely straightforward solution without any challenges. Like

any other solution in the world, clustering too has its share of problems. The most

common challenges we face in clustering are as follows:

 Too much data—Sometimes the magnitude of the data is quite big, and there are

a lot of dimensions available. In such a case, it becomes difficult to manage the

732.7 Common challenges faced in clustering

dataset. The computation power might be limited, and like any project, there is

finite time available. To overcome the problem, we can

– Try to reduce the number of dimensions by finding the most significant vari-

ables by using a supervised learning-based regression approach or decision

tree algorithm, etc.

– Reduce the number of dimensions by employing principal component analy-

sis or singular value decomposition, etc.

 A noisy dataset—“Garbage in, garbage out” is a cliché that is true for clustering

too. If the dataset is messy, it creates a lot of problems. The problems can

include

– Missing values (i.e., NULL, NA, ?, blanks, etc.).

– Outliers present in the dataset.

– Junk values like #€¶§^ etc., present in the dataset.

– Wrong entries made in the data. For example, if a name is entered in the

Revenue field, it is an incorrect entry.

We discuss the steps and the process to resolve these problems in later chapters.

In this chapter, we are examining how to work with categorical variables.

 Categorical variables—While discussing, recall the problem where k-means was

not able to use categorical variables. We solve that problem next.

To convert categorical variables into numeric ones, we can use one-hot encod-

ing. This technique adds additional columns equal to the number of distinct

classes as shown in the following figure. The variable city has unique values as

London and New Delhi. We can observe that two additional columns have been

created with 0 or 1 filled in for the values (see figure 2.36).

Figure 2.36 Using one-hot encoding to convert categorical variables into numeric ones

Using one-hot encoding does not always ensure an effective and efficient solu-

tion. Imagine if the number of cities in this example is 100; then we will have

100 additional columns in the dataset, and most of the values will be filled in

with 0. Hence, in such a situation, it is advisable to group a few values.

 Distance metrics—With different distance metrics, we might get different results.

Though there is no “one size fits all,” Euclidean distance is most often used for

measuring distance.

74 CHAPTER 2 Clustering techniques

 Subjective interpretations—Interpretations for the clusters are quite subjective. By

using different attributes, completely different clustering can be done for the

same datasets. As discussed earlier, the focus should be on solving the business

problem at hand. This holds the key to choosing the hyperparameters and the

final algorithm.

 Time-consuming—Since a lot of dimensions are dealt with simultaneously, some-

times converging the algorithm takes a lot of time.

Despite all these challenges, clustering is a widely recognized and utilized technique.

2.8 Concluding thoughts

Unsupervised learning is not an easy task. But it is certainly a very engaging one. It

does not require any target variable, and the solution identifies the patterns itself,

which is one of the biggest advantages of unsupervised learning algorithms. And the

implementations are already having a great effect on the business world. We studied

one of these solution classes called clustering in this chapter.

 Clustering is an unsupervised learning solution that is useful for pattern identifica-

tions, exploratory analysis, and, of course, segmenting the data points. Organizations

heavily use clustering algorithms and proceed to the next level of understanding con-

sumer data. Better prices can be offered, more relevant offers can be suggested, con-

sumer engagement can be improved, and overall customer experience becomes

better. After all, a happy consumer is the goal of any business. Clustering can be used

not only for structured data but for text data, images, videos, and audio too. Due to its

capability to find patterns across multiple datasets using a large number of dimen-

sions, clustering is the go-to solution whenever we want to analyze multiple dimen-

sions together.

 In this second chapter of this book, we introduced concepts of unsupervised-based

clustering methods. We examined different types of clustering algorithms—k-means

clustering, hierarchical clustering, and DBSCAN clustering—along with their mathe-

matical concepts, respective use cases, and pros and cons with an emphasis on creat-

ing actual Python code for these datasets.

 In the following chapter, we will study dimensionality reduction techniques like

principal component analysis and singular value decomposition. We will discuss the

building blocks for techniques, their mathematical foundation, advantages and disad-

vantages, and use cases and perform actual Python implementation.

2.9 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Get the online retail data from https://mng.bz/dXqo. This dataset contains all

the online transactions occurring between January 12, 2010, and September 12,

2011, for a UK-based retailer. Apply the three algorithms described in the chap-

ter to identify which customers the company should target and why.

https://mng.bz/dXqo

75Summary

 Get the IRIS dataset from https://www.kaggle.com/uciml/iris. It includes three

iris species with 50 samples, each having some properties of the flowers. Use k-

means and DBSCAN and compare the results.

 Explore the dataset at UCI for clustering at http://archive.ics.uci.edu/ml/

index.php.

 Study the following papers on k-means clustering, hierarchical clustering, and

DBSCAN clustering:

– K-means clustering

https://mng.bz/rKqJ

https://mng.bz/VVEy

https://ieeexplore.ieee.org/document/1017616

– Hierarchical clustering

https://ieeexplore.ieee.org/document/7100308

https://mng.bz/xKqd

https://mng.bz/AQno

– DBSCAN clustering

https://arxiv.org/pdf/1810.13105.pdf

https://ieeexplore.ieee.org/document/9356727

Summary

 Clustering is used for a variety of purposes across all industries, such as retail,

telecom, finance, and pharma. Clustering solutions are implemented for cus-

tomer and marketing segmentation to better understand the customer base,

which further improves targeting.

 Clustering groups objects with similar attributes into segments, aiding in data

understanding and pattern discovery without needing a target variable.

 Using clustering, we find the underlying patterns in a dataset and identify the

natural groupings in the data.

 There can be multiple clustering techniques based on the methodology. A few

examples are k-means clustering, hierarchical clustering, DBSCAN, and fuzzy

clustering.

 Different clustering algorithms (k-means, hierarchical, DBSCAN) offer distinct

pros and cons, and each is suitable for different data characteristics and purposes.

 Clustering is categorized into hard clustering, where objects belong to a single

cluster, and soft clustering, where objects can belong to multiple clusters.

 Different clustering attributes and techniques, such as centroid-based, density-

based, and distribution models, lead to varied clustering results.

 Effective clustering algorithms produce comprehensible, scalable, and inde-

pendent clusters, handling outliers and multiple data types with minimal

domain input.

https://www.kaggle.com/uciml/iris
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://mng.bz/rKqJ
https://mng.bz/xKqd
https://mng.bz/VVEy
https://ieeexplore.ieee.org/document/1017616
https://ieeexplore.ieee.org/document/7100308
https://mng.bz/AQno
https://ieeexplore.ieee.org/document/9356727
https://arxiv.org/pdf/1810.13105.pdf

76 CHAPTER 2 Clustering techniques

 Distance metrics for clustering include Euclidean, Chebyshev, Manhattan, and

cosine distances.

 Centroid-based clustering measures similarity based on the distance to the cen-

troid of clusters.

 K-means clustering creates nonoverlapping clusters by specifying the number of

clusters, k, and assigning data points to the nearest center iteratively.

 The elbow method is a common technique to determine the optimal number

of clusters in k-means clustering.

 K-means is based on the centroid of the cluster.

 Hierarchical clustering creates clusters based on connectivity and does not

require a predefined number of clusters.

 Hierarchical clustering can be agglomerative (bottom-up) or divisive (top-

down) and uses linkage criteria to measure distances.

 DBSCAN identifies clusters based on point density and effectively distinguishes

outliers.

 DBSCAN does not require specifying the number of clusters and is suited for

irregular-shaped clusters.

 Measuring clustering accuracy involves metrics like WCSS, intercluster sum of

squares, silhouette value, and the Dunn index.

77

Dimensionality reduction

Knowledge is a process of piling up facts; wisdom lies in their simplification.

—Martin H. Fischer

We face complex situations in life. Life throws multiple options at us, and we

choose a few viable ones from them. This decision of shortlisting is based on the

significance, feasibility, utility, and perceived profit from each of the options. The

ones that fit the bill are then chosen. A perfect example can be selecting your vaca-

tion destination. Based on the weather, travel time, safety, food, budget, and several

This chapter covers

 The curse of dimensionality and its disadvantages

 Various methods of reducing dimensions

 Principal component analysis

 Singular value decomposition

 Python solutions for both principal component

analysis and singular value decomposition

 A case study on dimension reduction

78 CHAPTER 3 Dimensionality reduction

other options, we choose a few where we would like to spend our next vacation. In this

chapter, we study precisely the same—how to reduce the number of options—albeit in

the data science and machine learning world.

 In the last chapter, we covered major clustering algorithms. We also went over a

case study. The datasets we generate and use in such real-world examples have a lot of

variables. Sometimes, there can be more than 100 variables or dimensions in the data.

But not all of them are important. Having a lot of dimensions in the dataset is referred

to as the curse of dimensionality. To perform any further analysis, we choose a few

from the list of all of the dimensions or variables. In this chapter, we study the need

for dimension reductions, various dimensionality techniques, and the respective pros

and cons. We will dive deeper into the concepts of principal component analysis

(PCA) and singular value decomposition (SVD) and their mathematical foundations

and complement these with Python implementation. Also, continuing our structure

from the last chapter, we will examine a real-world case study in the telecommunica-

tion sector. There are other advanced dimensionality reduction techniques like t-dis-

tributed stochastic neighbor embedding (t-SNE) and linear discriminant analysis

(LDA), which we will explore in later chapters.

 Clustering and dimensionality reductions are the major categories of unsupervised

learning. We studied major clustering methods in the last chapter, and we discuss

dimensionality reduction in this chapter. With these two solutions, we cover a lot of

ground in the unsupervised learning domain. But there are many more advanced top-

ics to be covered, which are part of the latter chapters of the book.

 Let’s first understand what we mean by the “curse of dimensionality.”

3.1 Technical toolkit

We are using the same version of Python as in the last chapters. Jupyter Notebook will

be used in this chapter too.

 All the datasets and code files are available at the GitHub repository at (https://

mng.bz/ZlBR). You need to install the following Python libraries to execute the code:

numpy, pandas, matplotlib, scipy, and sklearn. Since you have used the same pack-

ages in the last chapter, you don’t need to install them again. CPU is good enough for

execution, but if you face some computing problems, switch to GPU or Google Colab.

Refer to the appendix if you face any problems with the installation of any of these

packages.

3.2 The curse of dimensionality

Let us continue with the vacation destination example we introduced earlier. The

choice of destination is dependent on several parameters: safety, availability, food,

nightlife, weather, budget, health, and so on. Having too many parameters is confus-

ing. Let us understand by a real-life example.

 Consider this: a retailer wishes to launch a new range of shoes in the market, and

for that, a target group of customers should be chosen. This target group will be

https://mng.bz/ZlBR
https://mng.bz/ZlBR

793.2 The curse of dimensionality

reached through email, SMS, newsletter, etc. The business objective is to entice these

customers to buy the newly launched shoes. From the entire customer base, the target

group of customers can be chosen based on variables like customer age, gender, bud-

get, preferred category, average spend, frequency of shopping, and so on. These many

variables or dimensions make it hard to shortlist the customers based on a sound data

analysis technique. We would be analyzing too many parameters simultaneously,

examining the effect of each on the shopping probability of the customer, and hence

it becomes too tedious and confusing of a task. It is the curse of dimensionality prob-

lem we face in real-world data science projects. We can face the curse of dimensional-

ity in one more situation wherein the number of observations is fewer than the

number of variables. Consider a dataset where the number of observations is X, while

the number of variables is more than X—in such a case, we face the curse of

dimensionality.

 An easy method to understand any dataset is through visualization. Let’s visualize a

dataset in a vector-space diagram. If we have only one attribute or feature in the data-

set, we can represent it in one dimension (see the left diagram in figure 3.1). For

example, we might wish to capture only the height of an object using a single dimen-

sion. If we have two attributes, we need two dimensions, as shown in the middle dia-

gram in figure 3.1, wherein to get the area of an object, we will require both length

and width. If we have three attributes, for example, to calculate the volume, which

requires length, width, and height, we require a 3D space, as shown in the diagram at

right in figure 3.1. This requirement will continue to grow based on the number of

attributes.

Figure 3.1 Only one dimension is required to represent the data points—for example, to represent the height of

an object (left). We need two dimensions to represent a data point. Each data point can correspond to the length

and width of an object, which can be used to calculate the area (middle). Three dimensions are required to show a

point (right). Here, it can be length, width, and height, which are required to get the volume of an object. This

process continues based on the number of dimensions present in the data.

x

y

x x

z

y

Only one dimension is
required to represent a
point in vector space.

Two dimensions are required.

Three dimensions
are required.

1

1,1

1,1,1

80 CHAPTER 3 Dimensionality reduction

Consider a dataset where you have an attribute for a data point—for example, gender.

Then we add age and then education, address, and so on. To represent these attri-

butes, the number of dimensions will keep on increasing. Hence, it is quite easy for us

to conclude that with an increase in the number of dimensions, the amount of space

required to represent increases by leaps and bounds. This is referred to as the curse of

dimensionality. The term was introduced by Richard E. Bellman and is used to refer to

the problem of having too many variables in a dataset—some of which are significant

while many others may be less important.

 There is another well-known theory named the Hughes phenomenon, shown in fig-

ure 3.2. Generally, in data science and machine learning, we wish to have as many vari-

ables as possible to train our model. The performance of the supervised learning clas-

sifier algorithm will increase to a certain limit and will peak with the most optimal

number of variables. But, using the same amount of training data and with an

increased number of dimensions, there is a decrease in the performance of a super-

vised classification algorithm. In other words, it is not advisable to have the variables

in a dataset if they are not contributing to the accuracy of the solution. We should

remove such variables from the dataset.

An increase in the number of dimensions has the following effects on the machine

learning model:

 As the model deals with an increased number of variables, the mathematical

complexity increases. For example, in the case of the k-means clustering

method we discussed in the last chapter, when we have a greater number of vari-

ables, the distance calculation between respective points will become complex.

Hence the overall model becomes more complex.

 The dataset generated in a larger dimensional space can be much sparser as

compared to a smaller number of variables. The dataset will be sparser as some

of the variables will have missing values, NULLs, etc. Therefore, space is much

Figure 3.2 The Hughes

phenomenon shows that the

performance of a machine learning

model will improve initially with an

increase in the number of

dimensions. But a further increase

leads to a decrease in the model’s

performance.

813.2 The curse of dimensionality

emptier, the dataset is less dense, and a smaller number of variables have values

associated with them.

 With increased complexity in the model, the processing time required

increases. The system feels the pressure to deal with so many dimensions.

 The overall solution becomes more complex to comprehend and execute.

Recall chapter 1, where we discussed supervised learning algorithms. Due to

the high number of dimensions, we might face the problem of overfitting in

supervised learning models.

DEFINITION When a supervised learning model has good accuracy on training
data but lesser accuracy on unseen data, it is referred to as overfitting. Overfit-
ting is a nuisance as the very aim of machine learning models is to work well
on unseen datasets, and overfitting defeats this purpose.

Let us relate things to a real-world example. Consider an insurance company offering

different types of insurance policies like life insurance, vehicle insurance, health

insurance, home insurance, etc. The company wishes to use data science and execute

clustering use cases to enhance the customer base and the total number of policies

sold. They have customer details like age, gender, profession, policy amount, histori-

cal transactions, number of policies held, annual income, type of policy, number of

historical defaults, etc. At the same time, let us assume that variables like whether the

customer is left-handed or right-handed, whether they wear black or brown shoes,

what shampoo brand they use, the color of their hair, and their favorite restaurant are

also captured. If we include all the variables in the dataset, the total number of vari-

ables in the resultant dataset will be quite high. The distance calculation will be more

complex for a k-means clustering algorithm, the processing time will increase, and the

overall solution will be quite complex.

 It is also imperative to note that not all the dimensions or variables are significant.

Hence, it is vital to filter out the important ones from all the variables we have.

Remember, nature always prefers simpler solutions! In the case discussed previously, it

is highly likely that variables like hair color and favorite restaurant, etc., will not affect

the outputs. So it is in our best interest to reduce the number of dimensions to ease

the complexity and reduce the computation time. At the same time, it is also vital to

note that dimensionality reduction is not always desired. It depends on the type of

dataset and the business problem we wish to resolve. We will explore this more when

we work on the case study in subsequent sections of the chapter.

Exercise 3.1

Answer these questions to check your understanding:

1 The curse of dimensionality refers to having a lot of data. True or False?

2 Having a high number of variables will always increase the accuracy of a solu-
tion. True or False?

3 How does a large number of variables in a dataset affect the model?

82 CHAPTER 3 Dimensionality reduction

We have established that having a lot of dimensions is a challenge for us. We next

examine the various methods to reduce the number of dimensions.

3.3 Dimension reduction methods

We studied the disadvantages of having really high-dimensional data in the last sec-

tion. A fewer number of dimensions might result in a simpler structure for our data,

which will be computationally efficient. At the same time, we should be careful when

reducing the number of variables. The output of the dimension reduction method

should be complete enough to represent the original data and should not lead to any

information loss. In other words, if originally we had, for example, 500 variables and

we reduced it to 120 significant ones, still these 120 should be robust enough to cap-

ture almost all the information. Let us understand using a simple example.

 Consider this: we wish to predict the amount of rainfall a city will receive in the

next month. The rainfall prediction for that city might be dependent on temperature

over a period, wind speed measurements, pressure, distance from the sea, elevation

above sea level, etc. These variables make sense if we wish to predict rainfall. At the

same time, variables like the number of cinema halls in the city, whether the city is the

capital of the country, or the number of red cars in the city will not affect the predic-

tion of rainfall. In such a case, if we do not use the number of cinema halls in the city

to predict the amount of rainfall, it will not reduce the capability of the system. The

solution, in all probability, will still be able to perform quite well. Hence, in such a

case, no information will be lost by dropping such a variable, and surely we can drop it

from the dataset. On the other hand, removing variables such as temperature or dis-

tance from the ocean will very likely negatively affect the prediction accuracy. This is a

very simple example highlighting the need to reduce the number of variables.

 The dimensions or the number of variables can be reduced by a combination of man-

ual and algorithm-based methods. But before studying them in detail, there are a few

mathematical terms and components we should be aware of, which we will discuss next.

3.3.1 Mathematical foundation

There are quite a few mathematical terms that one must know to develop a thorough

understanding of dimensionality reduction methods. We are trying to reduce the

number of dimensions of a dataset. A dataset is nothing but a matrix of values—thus,

a lot of the concepts are related to matrix manipulation methods, their geometrical

representation, and performing transformations on such matrices. The mathematical

concepts are discussed in the appendix. You also need an understanding of eigenval-

ues and eigenvectors. These concepts will be reused throughout the book; they are

been put in the appendix for quick reference. You are advised to go through them

before proceeding.

3.4 Manual methods of dimensionality reduction

To tackle the curse of dimensionality, we wish to reduce the number of variables in a

dataset. The reduction can be done by removing the variables from the dataset. Or a

833.4 Manual methods of dimensionality reduction

very simple solution for dimensionality reduction can be combining the variables that

can be grouped logically or can be represented using a common mathematical

operation.

 For example, as shown in figure 3.3, the data can be from a retail store where dif-

ferent customers have generated different transactions. We will get the sales, the num-

ber of invoices, and the number of items bought by each customer over a period. In

the table, customer 1 has generated two invoices, bought five items in total, and gen-

erated a total sale of 100.

Figure 3.3 In the first table, we have the sales, invoices, and number of items as the

variables. In the second table, they have been combined to create new variables.

If we wish to reduce the number of variables, we might combine three variables into

two variables. Here we have introduced variables average transaction value (ATV) and

average basket size (ABS) wherein ATV = Sales/Invoices and ABS = Number Of

Items/Invoices.

 So, in the second table for customer 1, we have ATV as 50 and ABS as 2.5. Hence,

the number of variables has been reduced from three to two. The process here is only

an example of how we can combine various variables. It does not mean that we should

replace sales with ATV as a variable.

 This process can continue to reduce the number of variables. Similarly, for a tele-

com subscriber, say we have the minutes of mobile calls made during 30 days in a

month. We can add them to create a single variable—minutes used in a month. These

examples are very basic ones to start with. Using the manual process, we can employ two

other commonly used methods: manual selection and using correlation coefficient.

3.4.1 Manual feature selection

Continuing from the rainfall prediction example we discussed in the last section, a data

scientist might be able to drop a few variables. This will be based on a deep understand-

ing of the business problem at hand and the corresponding dataset being used. How-

ever, it is an underlying assumption that the dataset is quite comprehensible for the

data scientist and that they understand the business domain well. Most of the time, the

business stakeholders will be able to guide on such methods. The variables must also be

unique, and not much dependency should exist. As shown in figure 3.4, we can remove

a few of the variables that might not be useful for predicting rainfall.

Customer ID Sales Invoices No. of items Customer ID ATV ABS

1 100 2 5 1 50 2.5

2 200 2 4 2 100 2

3 300 10 12 3 30 1.2

4 400 2 10 4 200 5

5 500 5 12 5 100 2.4

84 CHAPTER 3 Dimensionality reduction

Figure 3.4 In the first table, we have all the variables present in the dataset. Using business logic, some of the

variables that might not be of much use have been discarded in the second table. But this is to be done with due

caution; the best way is to get guidance from the business stakeholders.

Sometimes, feature selection methods are also referred to as wrapper methods. Here, a

machine learning model is wrapped or fitted with a subset of variables. In each itera-

tion, we will get a different set of results. The set that generates the best results is

selected for the final model.

3.4.2 Correlation coefficient

Correlation between two variables simply means that they have a mutual relationship

with each other. The change in the value of one variable will affect the value of

another, which means that data points with similar values in one variable have similar

values for the other variable. The variables that are highly correlated with each other

supply similar information, so one of them can be dropped.

NOTE Correlation is described in detail in the appendix.

For example, for a retail store, the number of invoices generated in a day will be

highly correlated with the amount of sales generated, so one of them can be dropped.

Another example is students who study for a higher number of hours will have better

grades than the ones who study less (mostly!).

 But we should be careful in dropping the variables and not trust correlation alone.

The business context of a variable should be thoroughly understood before making

any decision.

NOTE It is a good idea to discuss this with the business stakeholders before
dropping any variables from the study.

Correlation-based methods are sometimes called filter methods. Using correlation coef-

ficients, we can filter and choose the variables that are most significant.

Exercise 3.2

Answer these questions to check your understanding:

1 We can drop a variable simply if we feel it is not required. True or False?

2 If two variables are correlated, always drop one of them. True or False?

Temperature Pressure Elevation Is_capital
Number of

cars
Distance

from the sea
Numer of

malls
Number of

parks
Temperature Pressure Elevation

Distance
from the sea

50 1.1 200 Y 1000 100 5 4 50 1.1 200 100

51 1.2 200 N 1200 120 4 6 51 1.2 200 120

52 1.1 200 Y 1100 150 5 8 52 1.1 200 150

54 1.2 200 N 2000 200 2 4 54 1.2 200 200

54 1.2 200 Y 2100 120 6 2 54 1.2 200 120

853.5 Principal component analysis

Manual methods are easier solutions and can be executed quite efficiently. The data-

set size is reduced, and we can proceed with the analysis. But manual methods are

sometimes subjective and depend a lot on the business problem at hand. Many times,

it is also not possible to employ manual methods for dimension reduction. In such sit-

uations, we have algorithm-based methods, which we study in the next section.

3.4.3 Algorithm-based methods for reducing dimensions

We examined manual methods in the last section. Continuing from there, we examine

algorithm-based methods in this section. The algorithm-based techniques are based on

a more mathematical base and hence prove to be more scientific methods. In real-

world business problems, we use a combination of both manual and algorithm-based

techniques. Manual methods are straightforward to execute as compared to algorithm-

based techniques. Also, we cannot comment on the comparison of both techniques, as

they are based on different foundations. But at the same time, it is imperative that you

put due diligence into the implementation of algorithm-based techniques.

 The major techniques used in dimensionality reductions are listed as follows. We

explore some of them in this book:

 PCA

 SVD

 LDA

 Generalized discriminant analysis

 Non-negative matrix factorization

 Multidimension scaling

 Locally linear embeddings

 IsoMaps

 Autoencoders

 t-SNE

These techniques are utilized for the common end goal: transform the data from a

high-dimensional space to a low-dimensional one. Some of the data transformations

are linear in nature, while some are nonlinear.

 We discuss PCA and SVD in detail in this chapter. In the later chapters of the book,

other major techniques will be explored. PCA is perhaps the most quoted dimension-

ality reduction method, which is explored in the next section.

3.5 Principal component analysis

Consider this: you are working on a dataset that has 250 variables. It is almost impossi-

ble to visualize such a high-dimensional space. Some of the 250 variables might be cor-

related with each other and some of them might not be, and there is a need to reduce

the number of variables without losing much information. PCA allows us to mathe-

matically select the most important features and leave the rest. PCA does reduce the

number of dimensions but also preserves the most important relationships between

86 CHAPTER 3 Dimensionality reduction

the variables and the important structures in the dataset. Hence, the number of vari-

ables is reduced, but the important information in the dataset is kept safe.

 PCA is a projection of high-dimensional data in lower dimensions. In simpler

terms, we are reducing an n -dimensional space into an m -dimensional one where n >

m while maintaining the nature and the essence of the original dataset. In the process,

the old variables are reduced to newer ones while maintaining the crux of the original

dataset. The new variables thus created are called principal components. The principal

components are a linear combination of the raw variables. As a result of this transfor-

mation, the first principal component captures the maximum randomness or the

highest variance in the dataset. The second principal component created is orthogo-

nal to the first component.

NOTE If two straight lines are orthogonal to each other, it means they are at
an angle of 90˚ to each other.

The process continues to the third component and so on. Orthogonality allows us to

maintain that there is no correlation between subsequent principal components.

NOTE PCA utilizes linear transformation of the dataset, and such methods
are sometimes referred to as feature projections. The resultant dataset or the
projection is used for further analysis.

Let us understand this better using an example. In figure 3.5, we have represented the

total perceived value of a home using some variables. The variables are area (sq m),

number of bedrooms, number of balconies, distance from the airport, distance from

the train station, and so on; we have 100+ variables.

Figure 3.5 The variables on which the price of a house can be estimated

We can combine some of the variables mathematically and logically. PCA will create a

new variable that is a linear combination of some of the variables, as shown in the fol-

lowing example. It will get the best linear combination of original variables so that the

new variable is able to capture the maximum variance of the dataset. Equation 3.1 is

only an example shown for illustration purposes wherein we are showing a new vari-

able created by a combination of other variables.

new_variable = a*area – b*bedrooms + c*distance – d*schools (3.1)

Area (sq m) Number of bedrooms Number of balconies Distance from airport No. of schools ...and so on

100 2 2 20 2

200 3 2 21 4

250 4 4 16 2

400 4 3 15 5

450 5 4 25 4

873.5 Principal component analysis

Now let’s understand the concept visually. In a vector-space diagram, we can represent

the dataset, as shown in figure 3.6. The left figure represents the raw data where we

can visualize the variables in an x-y diagram. As discussed earlier, we wish to create a

linear combination of variables. In other words, we wish to create a mathematical

equation that will be able to explain the relationship between x and y.

Figure 3.6 The dataset can be represented in a vector-space diagram (left). The straight line can be called the

line of best fit having the projections of all the data points on it (middle). The differences between the actual value

and the projections are the error terms (right).

The output of such a process will be a straight line as shown in the middle diagram in

figure 3.6. This straight line is sometimes referred to as the line of best fit. Using this

line of best fit, we can predict a value of y for a given value of x. These predictions are

nothing but the projections of data points on a straight line.

 The difference between the actual value and the projections is the error, as shown

in the right diagram in figure 3.6. The total sum of these errors is called the total pro-

jection error.

 There can be multiple options for this straight line, as shown in figure 3.7. These dif-

ferent straight lines will have different errors and different values of variances captured.

Y

X

Y

X

Y

X

Error

Y

X

Y

X

Y

X

Y

X

Figure 3.7 The dataset can be

captured by several lines, but

not all the straight lines will be

able to capture the maximum

variance. The equation that

gives the minimum error will be

the one chosen.

88 CHAPTER 3 Dimensionality reduction

The straight line that can capture the maximum variance will be the chosen one. In

other words, it gives the minimum error. It will be the first principal component, and the

direction of maximum spread will be the principal axis.

 The second principal component will be derived in a similar fashion. Since we know

the first principal axis, we can subtract the variance along this principal axis from the

total variance to get the residual variance. In other words, using the first principal com-

ponent, we would capture some variance in the dataset. But there will be a portion of

the total variance in the dataset that is still unexplained by the first principal compo-

nent. The portion of the total variance unexplained is the residual variance. Using the

second principal component, we wish to capture as much variance as we can.

 Using the same process to capture the direction of maximum variance, we will get

the second principal component. The second principal component can be at several

angles with respect to the first one, as shown in figure 3.8. It is mathematically proven

that if the second principal component is orthogonal (i.e., 90˚) to the first principal

component, this allows us to capture the maximum variance using the two principal

components. In figure 3.8, we can observe that the two principal components are at

an angle of 90˚ to each other.

Figure 3.8 The first figure on the left is the first principal component. The second principal component can be at

different angles with respect to the first principal component (middle). We should find the second principle that

allows us to capture the maximum variance. To capture the maximum variance, the second principal component

should be orthogonal to the first one, and thus the combined variance captured is maximized (right).

The process continues for the third and fourth principal components and so on. With

more principal components, the representation in a vector space becomes difficult to

visualize. You can think of a vector space diagram with more than three axes. Once all

the principal components are derived, the dataset is projected onto these axes. The

columns in this transformed dataset are the principal components. The principal compo-

nents created will be fewer than the number of original variables and will capture the

maximum information present in the dataset.

 Before we examine the process of PCA in-depth, let’s study its important

characteristics:

 PCA aims to reduce the number of dimensions in the resultant dataset.

Y

X

Y

X

Y

X

The angle
is 90°.

893.5 Principal component analysis

 PCA produces principal components that aim to reduce the noise in the dataset

by maximizing the feature variance.

 At the same time, the principal components reduce the redundancy in the data-

set. This is achieved by minimizing the covariance between the pairs of features.

 The original variables no longer exist in the newly created dataset. Instead, new

variables are created using these variables.

 It is not necessary that the principal components map one-to-one with all the

variables present in the dataset. They are a new combination of the existing

variables. Hence, they can be a combination of several different variables in one

principal component (as shown in equation 3.1).

 The new features created from the dataset do not share the same column

names.

 The original variables might be correlated with each other, but the newly cre-

ated variables are unrelated to each other.

 The number of newly created variables is fewer than the original number of

variables. The process to select the number of principal components has been

described in section 3.5.2. After all, that is the whole purpose of dimensionality

reduction.

 If PCA has been used for reducing the number of variables in a training dataset,

the testing/validation datasets should be reduced by using PCA.

 PCA is not synonymous with dimensionality reduction only. It can be put into

use for a number of other usages beyond dimensionality reduction like feature

extraction, data visualization, multicollinearity detection, preprocessing, etc.

Using a PCA only for dimensionality reduction will be a misnomer for sure.

We will now examine the approach used while implementing PCA, and then we will

develop a Python solution using PCA. We need not apply all the steps while we

develop the codes, as the heavy lifting has already been done by the packages and

libraries. The steps given here are taken care of by the packages, but still, it is impera-

tive that you understand these steps to properly appreciate how PCA works:

1 In PCA, we start with normalizing our dataset as a first step. It ensures that all our

variables have a common representation and become comparable. We have

methods to perform the normalization in Python, which we will study when we

develop the code. To explore more about normalizing the dataset, see the

appendix.

2 Get the covariance in the normalized dataset. It allows us to study the relation-

ship between the variables. We generally create a covariance matrix, as shown in

the Python example in the next section.

3 We can then calculate the eigenvectors and eigenvalues of the covariance

matrix. The mathematical concept of eigenvectors is given in the appendix.

4 We then sort the eigenvalues in decreasing order of eigenvalues. We choose the

eigenvectors corresponding to the maximum value of eigenvalues. The

90 CHAPTER 3 Dimensionality reduction

components chosen will be able to capture the maximum variance in the data-

set. There are other methods to shortlist the principal components, which we

will explore while we develop the Python code.

So, in essence, principal components are the linear combinations of the original vari-

ables. The weight in this linear combination is the eigenvector satisfying the error cri-

teria of the least square method.

3.5.1 Eigenvalue decomposition

In the context of PCA, the eigenvector will represent the direction of the vector and

the eigenvalue will be the variance that is captured along that eigenvector. See figure

3.9, where we break the original n x n matrix into components.

Figure 3.9 Using eigenvalue decomposition, the original matrix can be broken into an eigenvector matrix, an

eigenvalue matrix, and an inverse of an eigenvector matrix. We implement PCA using this methodology.

Mathematically, we can show the relation with equation 3.2

A *v = *v (3.2)

where A is a square matrix, v is the eigenvector, and  is the eigenvalue. Here, it is

important to note that the eigenvector matrix is the orthonormal matrix, and its col-

umns are eigenvectors. The eigenvalue matrix is the diagonal matrix, and its eigenval-

ues are the diagonal elements. The last component is the inverse of the eigenvector

Exercise 3.3

Answer these questions to check your understanding:

1 PCA will result in the same number of variables in the dataset. True or False?

2 PCA will be able to capture 100% of the information in the dataset. True or
False?

3 What is the logic of selecting principal components in PCA?

= * *

Original n x n matrix Eigenvector matrix Eigenvalue matrix Inverse of the
eigenvector matrix

913.5 Principal component analysis

matrix. Once we have the eigenvalues and the eigenvectors, we can choose the signifi-

cant eigenvectors for getting the principal components.

 We present PCA and SVD as two separate methods in this book. Both methods are

used to reduce high-dimensional data into lower-dimensional ones and, in the pro-

cess, retain the maximum information in the dataset. The difference between the two

is SVD exists for any sort of matrix (rectangular or square), whereas eigen decomposi-

tion is possible only for square matrices. You will understand it better once we have

covered SVD later in this chapter.

3.5.2 Python solution using PCA

We have studied the concepts of PCA and the process using eigenvalue decomposi-

tion. It is time for us to dive into Python and develop a PCA solution on a dataset. I

will show you how to create eigenvectors and eigenvalues on the dataset. To imple-

ment the PCA algorithms, we will use the sklearn library. Libraries and packages pro-

vide a faster solution for implementing algorithms.

 We use the Iris dataset for this problem. It is one of the most popular datasets used

for machine learning problems. The dataset contains data of three iris species with 50

samples each and having properties of each flower, like petal length, sepal length, etc.

The objective of the problem is to predict the species using the properties of the

flower. The independent variables, hence, are the flower properties, whereas the vari-

able “species” is the target variable. The dataset and the code are checked in at the

GitHub repository. Here we are using the inbuilt PCA functions, which reduce the

effort required to implement PCA. The steps are as follows:

1 Load all the necessary libraries. We are going to use numpy, pandas, seaborn,

matplotlib, and sklearn. Note that we have imported PCA from sklearn.

NOTE The following are the standard libraries. You will find that almost all
the machine learning solutions would import these libraries in the solution
notebook:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

2 Load the dataset now. It is a .csv file:

iris_df = pd.read_csv('IRIS.csv')

3 We will now perform a basic check on the dataset, looking at the first five rows,

the shape of the data, the spread of the variables, etc. We are not performing an

extensive exploratory data analysis here as the steps are covered in chapter 2.

The dataset has 150 rows and 6 columns (see figure 3.10).

92 CHAPTER 3 Dimensionality reduction

iris_df.head()

iris_df.describe()
iris_df.shape

4 Here, we should break the dataset into independent variables and a target vari-

able. X_variables here represent the independent variables, which are in col-

umns 2–5 of the dataset while y_variable is the target variable, which is

“species” in this case and is the final column in the dataset. Recall we wish to

predict the species of a flower using the other properties. Hence, we have sepa-

rated the target variable “species” and other independent variables:

X_variables = iris_df.iloc[:,1:5]
X_variables
y_variable = iris_df.iloc[:,5]

5 Normalize the dataset. The built-in method of StandardScalar() does the job

for us quite easily.

NOTE The StandardScalar() method normalizes the dataset for us. It sub-
tracts the mean from the variable and divides it by the standard deviation. For
more details on normalization, refer to the appendix.

Figure 3.10 Code output

933.5 Principal component analysis

We invoke the method and then use it on our dataset to get the transformed dataset.

Since we are working on independent variables, we are using X_variables here. First,

we invoke the StandardScalar() method. Then we use the fit_transform method.

The fit_transform method first fits the transformers to X and Y and then returns a

transformed version of X:

sc = StandardScaler()
transformed_df = sc.fit_transform(X_variables)

6 Calculate the covariance matrix and print it. The output is shown in figure 3.11.

Getting the covariance matrix is straightforward using numpy:

covariance_matrix = np.cov(transformed_df.T)
covariance_matrix

Figure 3.11 The covariance matrix

7 Calculate the eigenvalues. Inside the numpy library, we have the built-in func-

tionality to calculate the eigenvalues. We will then sort the eigenvalues in

descending order. To shortlist the principal components, we can choose eigen-

values greater than 1. This criterion is called Kaiser criteria. We are exploring

other methods too.

NOTE The eigenvalue represents how good a component is as a summary of
the data. If the eigenvalue is 1, it means that the component contains the
same amount of information as a single variable; hence, we choose the eigen-
value that is greater than 1.

In this code, first we get the eigen_values and eigen_vectors, and then we arrange

them in descending order (see figure 3.12):

eigen_values, eigen_vectors = np.linalg.eig(covariance_matrix)
eigen_pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in

range(len(eigen_values))]
print('Eigenvalues arranged in descending order:')
for i in eigen_pairs:
 print(i[0])

Figure 3.12 Eigenvalues

arranged in descending order

94 CHAPTER 3 Dimensionality reduction

8 Invoke the PCA method from the sklearn library. The method is used to fit the

data here. Note we have not yet determined the number of principal compo-

nents we wish to use in this problem:

pca = PCA()
pca = pca.fit(transformed_df)

9 The principal components are now set. Let’s have a look at the variance

explained by them. We can observe that the first component captures 72.77%

variation, the second captures 23.03% variation, and so on (figure 3.13):

explained_variance = pca.explained_variance_ratio_
explained_variance

Figure 3.13 The degree of variance of the principal components

10 We now plot the components in a bar plot for better visualization (see figure

3.14):

dataframe = pd.DataFrame({'var':pca.explained_variance_ratio_,
 'PC':['PC1','PC2','PC3','PC4']})
sns.barplot(x='PC',y="var",
 data=dataframe, color="b");

11 Here we draw a scree plot to visualize the cumulative variance being explained

by the principal components (see figure 3.15):

plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

V
a

ri
a
n
c
e

PC1 PC2 PC3 PC4
Principal component

Figure 3.14 Bar plot of the

principal components

953.5 Principal component analysis

plt.ylabel('cumulative explained variance')
plt.show()

12 In this case study, we choose the top two principal components as the final solu-

tions, as these two capture 95.08% of the total variance in the dataset:

pca_2 = PCA(n_components =2)
pca_2 = pca_2.fit(transformed_df)
pca_2d = pca_2.transform(X_variables)

13 We will now plot the dataset with respect to two principal components. For that,

species must be tied back to the actual values of the species variable, which are

Iris-setosa, Iris-versicolor, and Iris-virginica. Here, 0 is mapped to

Iris-setosa, 1 is Iris-versicolor, and 2 is Iris-virginica. In the following

code, first the species variable gets its values replaced by using the mapping dis-

cussed earlier:

iris_df['Species'] = iris_df['Species'].replace({'Iris-setosa':0, 'Iris-
versicolor':1, 'Iris-virginica':2})

14 We will now plot the results with respect to two principal components. The plot

shows the dataset reduced to two principal components we have just created.

These principal components can capture 95.08% variance of the dataset. The

first principal component represents the x-axis in the plot while the second

principal component represents the y-axis in the plot (see figure 3.16). The

color represents the various classes of Species. The print version of the book

will not show the different colors, but the output of the Python code will. The

same output is also available at the GitHub repository:

plt.figure(figsize=(8,6))
plt.scatter(pca_2d[:,0], pca_2d[:,1],c=iris_df['Species'])
plt.show()

1.00

0.95

0.90

0.85

0.80

0.75C
u
m

u
la

ti
v
e
 e

x
p
la

in
e

d
 v

a
ri
a

n
c
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Number of principal components

Figure 3.15 Scree plot

of cumulative variance

96 CHAPTER 3 Dimensionality reduction

This solution has reduced the number of components from four to two and still is

able to retain most of the information. Here, we have examined three approaches to

select the principal components based on the Kaiser criteria, the variance captured,

and the scree plot.

 Let us quickly analyze what we have achieved using PCA. Figure 3.17 shows two

representations of the same dataset. The one on the left is the original dataset of

X_variables. It has four variables and 150 rows. The right is the output of PCA. It has

150 rows but only two variables. Recall we have reduced the number of dimensions

from four to two. So, the number of observations has remained 150, while the number

of variables has reduced from four to two.

Figure 3.17 The figure on the left shows the original dataset, which has 150 rows and four variables. After the

implementation of PCA at right, the number of variables has been reduced to two. The number of rows remains the

same as 150, which is shown by the length of pca_2d.

6.5

6.0

5.5

5.0

4.5

4.0

2 3 4 5 6 7 8

Figure 3.16 The results for

two principal components

150 rows × 4 columns

973.6 Singular value decomposition

Once we have reduced the number of components, we can continue to implement a

supervised learning or an unsupervised learning solution. We can implement the pre-

ceding solution for any of the other real-world problems where we aim to reduce the

number of dimensions. We explore this more in section 3.8.

 With this, we have covered PCA. The GitHub repository contains a very interesting

PCA decomposition with variables and a corresponding plot.

3.6 Singular value decomposition

PCA transforms the data linearly and generates principal components that are not

correlated with each other. But the process followed in eigenvalue decomposition can

only be applied to square matrices, whereas SVD can be implemented to any m × n

matrix.

 Say we have matrix A. The shape of A is m × n, or it contains m rows and n columns.

The transpose of A can be represented as AT.

 We can create two other matrices using A and AT as A AT and ATA. These resultant

matrices A AT and ATA have some special properties, which are as follows (the mathe-

matical proof of the properties is beyond the scope of the book):

 They are symmetric and square matrices.

 Their eigenvalues are either positive or zero.

 Both A AT and ATA have the same eigenvalue.

 Both A AT and ATA have the same rank as the original matrix A.

The eigenvectors of A AT and ATA are referred to as singular vectors of A. The square

root of their eigenvalues is called singular values.

 Since both matrices (A AT and ATA) are symmetrical, their eigenvectors are ortho-

normal to each other. In other words, because they are symmetrical, the eigenvectors

are perpendicular to each other and can be of unit length.

 Now, with this mathematical understanding, we can define SVD. As per the SVD

method, it is possible to factorize any matrix A, as shown in equation 3.3:

A = U * S * V T
(3.3)

Here, A is the original matrix, U and V are the orthogonal matrices with orthonormal

eigenvectors taken from A AT and ATA, respectively, and S is the diagonal matrix with r

elements equal to the singular values. In simple terms, SVD can be seen as an

enhancement of the PCA methodology using eigenvalue decomposition.

NOTE Singular values are better and numerically more robust than eigenval-
ues decomposition.

PCA was defined as the linear transformation of input variables using principal com-

ponents. All those concepts of linear transformation, such as choosing the best com-

ponents, etc., remain the same. The major process steps also remain similar, except in

SVD we use a slightly different approach wherein the eigenvalue decomposition is

98 CHAPTER 3 Dimensionality reduction

replaced by singular vectors and singular values. It is often advisable to use SVD when

we have a sparse dataset; in the case of a denser dataset, PCA can be utilized.

3.6.1 Python solution using SVD

In this case study, we are using the mushrooms dataset. This dataset contains descrip-

tions of 23 species of grilled mushrooms. There are two classes: either the mushroom

is e, which means it is edible, or the mushroom is p, meaning it is poisonous. The steps

are as follows:

1 Import the libraries:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, StandardScaler

2 Import the dataset and check for shape, head, etc. (see figure 3.18):

mushrooms_df = pd.read_csv('mushrooms.csv')
mushrooms_df.shape
mushrooms_df.head()

Exercise 3.4

Answer these questions to check your understanding:

1 SVD works on the eigenvalue decomposition technique. True or False?

2 PCA is a much more robust methodology than SVD. True or False?

3 What are singular values and singular vectors in SVD?

Figure 3.18 Code output

993.6 Singular value decomposition

3 As we can observe, the values are categorical in nature in the dataset. They

should be first encoded into numeric values. This is not the only approach for

dealing with categorical variables. There are other techniques too, which we

will explore throughout the book.

First, invoke the LabelEncoder and then apply it to all the columns in the dataset. The

LabelEncoder converts the categorical variables into numeric ones using the one-hot

encoding method:

encoder = LabelEncoder()
for col in mushrooms_df.columns:
 mushrooms_df[col] = encoder.fit_transform(mushrooms_df[col])

4 Have another look at the dataset. All the categorical values have been converted

to numeric ones (see figure 3.19):

mushrooms_df.head()

5 The next two steps are the same as the last case study, wherein we break the

dataset into X_variables and y_label. Then the dataset is normalized:

X_variables = mushrooms_df.iloc[:,1:23]
y_label = mushrooms_df.iloc[:, 0]
scaler = StandardScaler()
X_features = scaler.fit_transform(X_variables)

6 Implement the SVD. There is a method in numpy that implements SVD. The

output is u, s, and v, where u and v are the singular vectors and s is the singular

value. If you wish, you can analyze their respective shapes and dimensions:

u, s, v = np.linalg.svd(X_features, full_matrices=True)

Figure 3.19

Code output

100 CHAPTER 3 Dimensionality reduction

7 We know that singular values allow us to compute variance explained by each of

the singular vectors. We will now analyze the percentage variance explained by

each singular vector and plot it (see figure 3.20). The results are shown to three

decimal places. Then we plot the results as a histogram plot. On the x-axis, we

have the singular vectors while on the y-axis we have the percent of variance

explained:

variance_explained = np.round(s**2/np.sum(s**2), decimals=3)
variance_explained
sns.barplot(x=list(range(1,len(variance_explained)+1)),
 y=variance_explained, color="blue")
plt.xlabel('SVs', fontsize=16)
plt.ylabel('Percent of the variance explained', fontsize=15)

8 Create a dataframe (see figure 3.21). This new dataframe svd_df contains the

first two singular vectors and the metadata. We then print the first five rows

using the head command:

col_labels= ['SV'+str(i) for i in range(1,3)]
svd_df = pd.DataFrame(u[:,0:2], index=mushrooms_df["class"].tolist(),
columns=col_labels)
svd_df=svd_df.reset_index()
svd_df.rename(columns={'index':'Class'}, inplace=True)
svd_df.head()

Figure 3.20 Code output

Figure 3.21 Dataframe containing the first

two singular vectors and the metadata

1013.7 Pros and cons of dimensionality reduction

9 Like the last case study, we replace numeric values with actual class labels; 1 is

edible while 0 is poisonous:

svd_df['Class'] = svd_df['Class'].replace({1:'Edible', 0:'Poison'})

10 We now plot the variance explained by the two components (see figure 3.22).

Here, we have chosen only the first two components. You are advised to take the

optimum number of components using the methods described in the last sec-

tion and plot the respective scatter plots. Here, on the x-axis, we have shown the

first singular vector SV1, and on the y-axis we have shown the second singular

vector SV2. The print version of the book does not show the different colors,

but the output of the Python code does. The same output is available at the

GitHub repository too:

color_dict = dict({'Edible':'Black',
 'Poison': 'Red'})
sns.scatterplot(x="SV1", y="SV2", hue="Class",
 palette=color_dict,
 data=svd_df, s=105,
 alpha=0.5)
plt.xlabel('SV 1: {0}%'.format(variance_explained[0]*100), fontsize=15)
plt.ylabel('SV 2: {0}%'.format(variance_explained[1]*100), fontsize=15)

We can observe the distribution of the two classes with respect to the two components.

The two classes—Edible and Poison—are color-coded as black and red, respectively.

As we have noted previously, we have chosen only two components to show the effect

using a visualization plot. You should choose the optimum number of components

using the methods described in the last case study and then visualize the results using

different singular vectors. This solution can be used to reduce dimensions in a real-

world dataset.

3.7 Pros and cons of dimensionality reduction

In the initial sections of the chapter, we discussed the drawbacks of the curse of

dimensionality. In the last few sections, we discovered PCA and SVD and implemented

Figure 3.22 Plot of the

variance explained by two

components

102 CHAPTER 3 Dimensionality reduction

them using Python. Now we will examine the advantages and challenges of these tech-

niques. The major advantages of implementing PCA or SVD are

 A reduced number of dimensions leads to less complexity in the dataset. The

correlated features are removed and transformed. Treating correlated variables

manually is a tough task, which is quite manual and frustrating. Techniques like

PCA and SVD do that job for us quite easily. The number of correlated features

is minimized, and overall dimensions are reduced.

 Visualization of the dataset is better if the number of dimensions is fewer. It is

very difficult to visualize and depict a very high-dimensional dataset.

 The accuracy of the machine learning model is improved if the correlated vari-

ables are removed. These variables do not add anything to the performance of

the model.

 The training time is reduced as the dataset is less complex. Hence, less compu-

tation power and time are required.

 Overfitting is a nuisance in supervised machine learning models. It is a condi-

tion where the model behaves very well on the training dataset but not so well

on the testing/validation dataset. It means that the model may not be able to

perform well on real-world unseen datasets. And it defeats the entire purpose of

building the machine learning model. PCA/SVD helps tackle overfitting by

reducing the number of variables.

At the same time, there are a few challenges we face with dimensionality reduction

techniques, which are as follows:

 The new components created by PCA/SVD are often less interpretable. They

are a combination of the independent variables in the dataset and do not actu-

ally relate to the real world; hence it can be difficult to relate them to real-world

scenarios.

 Numeric variables are required for PCA/SVD. Hence all the categorical vari-

ables should be represented in numeric form.

 Normalization/standardization of the dataset is required before the solution

can be implemented.

 There might be information loss when we use PCA or SVD. The principal com-

ponents cannot replace the original dataset, and hence there might be some loss

of information when we implement these methods.

However, despite a few challenges, PCA and SVD are used for reducing dimensions in

a dataset. They are two of the most popular methods and are quite heavily used. Note

that these are linear methods; we cover nonlinear methods of dimensionality reduc-

tion in a later part of the book.

 We have now covered the two most important techniques used in dimensionality

reduction. We will examine more advanced techniques in the later chapters. It is time

to move on to the case study.

1033.8 Case study for dimension reduction

3.8 Case study for dimension reduction

Let’s explore a real-world case to relate the use of PCA and SVD in real-world business

scenarios. Consider this: you are working for a telecommunication service provider.

You have a subscriber base, and you wish to cluster the consumers over several param-

eters. The challenge is the huge number of dimensions available to be analyzed.

 The objective will be to reduce the number of attributes using dimension reduc-

tion algorithms. The consumer dataset might include the following:

 Demographic details of the subscriber, which will consist of age, gender, occu-

pation, household size, marital status, etc. (see figure 3.23).

Note: This list is not exhaustive.

Figure 3.23 Demographic details of a subscriber like age, gender, marital status, household size, city, etc.

 Subscription details of the consumer, which might look like figure 3.24.

Note: This list is not exhaustive.

Figure 3.24 Subscription details of a subscriber like tenure, postpaid/prepaid connection, etc.

 Consumer usage, such as the minutes, call rates, data usages, services, etc. (see

figure 3.25).

Note: This list is not exhaustive.

Figure 3.25 Usage of a subscriber specifies the number of minutes used, SMS sent, data used, days spent in a

network, national or international usage, etc.

Mobile number Age Gender Marital status Household size City Country Children ...

12345678900 25 M Married 2 New York US 0

98765432100 26 F Unmarried 4 London UK 0

45656465210 27 U Married 4 New Delhi India 2

89323242111 28 M Unmarried 2 Dublin Ireland 0

31822338924 29 F Married 5 Tokyo Japan 3

Mobile number Prepaid/Postpaid Tenure Home broadband included Family pack included ...

12345678900 Prepaid 1 Y N

98765432100 Postpaid 1.5 Y N

45656465210 Prepaid 1.2 N Y

89323242111 Prepaid 2 Y Y

31822338924 Postpaid 5 N Y

Mobile number Minutes SMS
Data

usage
National
minutes

Days on
network

International
minutes

National
SMS

International
SMS

...

12345678900 199 123 1 GB 170 24 101 104 141

98765432100 105 119 2 GB 118 10 120 116 123

45656465210 130 137 2.5 GB 156 23 181 182 181

89323242111 110 161 4 GB 162 18 125 116 157

31822338924 186 172 5 GB 139 25 177 167 138

104 CHAPTER 3 Dimensionality reduction

 Payment and transaction details of the subscribers, which could be the various

transactions made, the mode of payment, frequency of payments, days since last

payment made, etc. (see figure 3.26).

Figure 3.26 Transaction details of a subscriber showing all the details of amount, mode, etc.

 Many more attributes. So far, we have established that the number of variables

involved are indeed high. Once we join all these data points, the number of

dimensions in the final data can be huge (see figure 3.27).

Figure 3.27 The final dataset is a combination of all the aforementioned datasets. It will be a big, really high-

dimensional dataset to be analyzed.

We should reduce the number of attributes before we proceed to any supervised or

unsupervised solution. In this chapter, we focus on dimensionality reduction tech-

niques, and hence the steps cover that aspect of the process. In later chapters, we will

examine exploratory analysis in more detail.

 As a first step, we will perform a sanity check of the dataset and do the data clean-

ing. We will examine the number of data points, number of missing values, duplicates,

junk values present, etc. This will allow us to delete any variables that might be very

sparse or contain not much information. For example, if the gender is available for

only 0.01% of the customer base, it might be a good idea to drop the variable. Or if all

the customers state their gender is male, the variable is not adding any new informa-

tion to us, and hence it can be discarded. Sometimes, using business logic, a variable

might be dropped from the dataset. An example has been discussed in section 3.4. In

this step, we might combine a few variables. For example, we might create a new vari-

able as average transaction value by dividing the total amount spent by the total num-

ber of transactions. In this way, we will be able to reduce a few dimensions.

NOTE A Python Jupyter notebook is available in the GitHub repository, where
we have given a very detailed solution for the data cleaning step.

Mobile number No. of transactions Value Mode Frequency ...

12345678900 20 100 Cash Monthly

98765432100 15 150 Card Yearly

45656465210 25 1000 Online Monthly

89323242111 5 10 Voucher Monthly

31822338924 40 400 Cash Weekly

Mobile number Age Gender Marital status Children Mins Data usage SMS Value Frequency Others…

12345 20 F Unmarried 0 200 1 100 10 Monthly …

12346 21 F Married 1 200 2 120 15 Weekly …

12347 22 M Unmarried 0 210 1 140 12 Monthly …

12348 23 M Married 2 90 4 120 10 Quarterly …

12349 24 F Married 2 1000 5 110 11 Yearly …

1053.8 Case study for dimension reduction

Once we are done with the basic cleaning of the data, we start with the exploratory

data analysis. As a part of exploratory analysis, we examine the spread of the variable,

its distribution, mean/median/mode of numeric variables, and so on. This is some-

times referred to as univariate analysis. This step allows us to measure the spread of the

variables, understand the central tendencies, examine the distribution of different

classes for categorical variables, and look for any anomalies in the values. For exam-

ple, using the dataset mentioned earlier, we will be interested in analyzing the maxi-

mum/minimum/average data usage or the percentage distribution of gender or age.

We would want to know the most popular method to make a transaction, and we

would also be interested to know the maximum/minimum/average amount of the

transactions. The list goes on.

 Then we explore the relationships between variables, which is referred to as bivari-

ate analysis. Crosstabs, or distribution of data, is a part of bivariate analysis. A correla-

tion matrix is created during this step. Variables that are highly correlated are

examined thoroughly. And based on business logic, one of them might be dropped.

This step is useful to visualize and understand the behavior of one variable in the pres-

ence of other variables. We can examine their mutual relationships and the respective

strength of the relationships. In this case study, we would answer questions such as,

“Do subscribers who use more data spend more time on the network as compared to

subscribers who send more SMS?”, “Do the subscribers who make a transaction using

the online mode generate more revenue than the ones using cash?”, or “Is there a

relationship between gender/age and the data usage?” Many such questions are

answered during this phase of the project.

NOTE A Python Jupyter notebook is available in the GitHub repository, which
provides detailed steps and code for the univariate and bivariate phases.
Check it out!

At this stage, we have a dataset that has a huge number of dimensions, and we want to

reduce the number of dimensions. Now is a good time to implement PCA or SVD. The

techniques will reduce the number of dimensions and will make the dataset ready for

the next steps in the process, as shown in figure 3.28. The figure is only representative

Figure 3.28 A very high-dimensional dataset will be reduced to a low-dimensional one

by using principal components that capture the maximum variance in the dataset.

106 CHAPTER 3 Dimensionality reduction

in nature to depict the effect of dimensionality reduction methods. Notice how the

large number of black lines in the left figure is reduced to a smaller number of red

lines in the right figure.

 The output of dimensionality reduction methods will be a dataset with a lower

number of variables. The dataset can be then used for supervised or unsupervised

learning. We have already looked at the examples using Python in the earlier sections

of the chapter.

 This concludes our case study on telecom subscribers. The case can be extended to

any other domain like retail; banking, financial services, and insurance; aviation;

healthcare; manufacturing; and others.

3.9 Concluding thoughts

Data is everywhere in various forms, levels, and dimensions and with varying levels of

complexity. It is often mentioned that “the more data, the better.” It is indeed true to

a certain extent. But with a really high number of dimensions, it becomes quite a her-

culean task to make sense of it. The analysis can become biased and very complex to

deal with. We explored this curse of dimensionality in this chapter. We found PCA and

SVD can be helpful to reduce this complexity. They make the dataset ready for the

next steps.

 Dimensionality reduction is not as straightforward as it looks. It is not an easy task,

but it is certainly a very rewarding one. And it requires a combination of business acu-

men, logic, and common sense. The resultant dataset might still require some addi-

tional work. But it is a very good point for building a machine learning model.

 This marks the end of the third chapter. It also ends the part 1 of the book. In this

part, we have covered a few core algorithms. We started with the first chapter of the

book, where we explored the fundamentals and basics of machine learning. In the

second chapter, we examined three algorithms for clustering. In this third chapter, we

explored PCA and SVD.

 In the second part of the book, we change gears and study more advanced topics.

We start with association rules in the next chapter. Then we go into advanced cluster-

ing methods of time-series clustering, fuzzy clustering, Gaussian mixture mode clus-

tering, etc. That is followed by a chapter on advanced dimensionality reduction

algorithms like t-SNE and LDA. To conclude the second part, we examine unsuper-

vised learning on text datasets. The third part of the book is even more advanced, so

still a long way to go. Stay tuned!

3.10 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Use the vehicles dataset used in the last chapter for clustering and implement

PCA and SVD on it. Compare the performance on clustering before and after

implementing PCA and SVD.

107Summary

 Get the datasets from https://mng.bz/2y9g. You can find many datasets. Com-

pare the performance of PCA and SVD on these datasets.

 Go through the following papers on PCA:

– https://mng.bz/1XKX

– https://mng.bz/Pd0w

– https://mng.bz/JYeo

– https://mng.bz/wJqO

 Go through the following research papers on SVD:

– https://mng.bz/qxqA

– https://mng.bz/7pNm

– https://arxiv.org/pdf/1211.7102.pdf

Summary

 The “curse of dimensionality” refers to problems arising from high-dimensional

datasets with too many variables, complicating the analysis and model

performance.

 High dimensions can lead to a sparse dataset, increased mathematical complex-

ity, longer processing times, and potential overfitting in machine learning

models.

 Hughes phenomenon shows that increasing variables only improves model per-

formance up to a point, after which it declines.

 Not all dimensions are significant; some may not contribute meaningfully to a

model’s accuracy and should be removed to reduce complexity.

 Data visualization can help explain datasets by reducing them to fewer dimen-

sions that still capture significant information.

 Manual dimension reduction includes dropping insignificant variables or com-

bining them logically to reduce dataset dimensions.

 Algorithm-based methods for dimension reduction include PCA, SVD, LDA,

and t-SNE, among others, which transform high-dimensional data into low-

dimensional spaces.

 PCA reduces dimensions by creating principal components that capture maxi-

mum variance while minimizing redundancy and noise.

 SVD enhances PCA, handling any matrix shape and decomposing them into

singular values and vectors to maintain dataset information.

 Each reduction technique requires the normalization of data and converting

categorical variables to numeric forms.

 Dimensionality reduction simplifies datasets, enhancing visualization and

model accuracy, reducing computation time, and mitigating overfitting risks.

 Challenges with dimensionality reduction include the loss of interpretability,

information loss, and the requirement for numerical data.

https://mng.bz/7pNm
https://mng.bz/qxqA
https://arxiv.org/pdf/1211.7102.pdf
https://mng.bz/wJqO
https://mng.bz/JYeo
https://mng.bz/Pd0w
https://mng.bz/1XKX
https://mng.bz/2y9g

108 CHAPTER 3 Dimensionality reduction

 Both PCA and SVD are widely used to effectively reduce dimensions, and each

is suitable for different dataset densities.

 The techniques can be applied in various industries like retail; banking, finan-

cial services, and insurance; and healthcare to simplify high-dimensional data-

sets for analysis.

 The reduction process involves preliminary data cleaning and exploratory data

analysis and then applying dimension-reduction techniques.

Part 2

Intermediate level

 K udos on finishing the first part, and welcome to the second part.

 Think of the journey in this book as your workshop, where raw concepts and

fundamentals are turned into case studies and working solutions using Python.

Each concept we cover, each algorithm we study, and each case study we solve

here is a building block, but it’s up to you to put them together in creative ways

and implement them in your real-life business. This implementation should

help you solve business problems in ways that are both logical and creative. The

algorithms, tools, and techniques you are learning will allow you to create func-

tional, powerful solutions—step by step.

 The true art of machine learning lies not in knowing all the algorithms by

heart or cramming the deepest of mathematical concepts but in knowing how to

approach the problem, use the available dataset effectively and efficiently, and

finally solve problems. You should not ignore the user experience while reveal-

ing the insights to the end user.

 You’ve learned the fundamentals of unsupervised learning in the first part; it

is now time to move to slightly more advanced topics. In this part, we’ll dive into

association rules, advanced clustering, and dimensionality reduction techniques.

111

Association rules

The power of association is stronger than the power of beauty; therefore, the power
of association is the power of beauty.

—John Ruskin

Congratulations on finishing the first part of the book! You explored the basics of

unsupervised learning and algorithms like k-means clustering, hierarchical cluster-

ing, DBSCAN, principal component analysis, and others. It is expected that you

have covered the mathematical concepts in the first part and created the Python

codes to solve the exercise given at the end of each chapter.

 Welcome to the second part of the book where we use the concepts learned in

the first part and explore slightly more complex topics. We start with association

rules in this chapter.

This chapter covers

 Association rules

 Different types of algorithms for association rules

 Implementation of different algorithms for

association rules

 Sequence learning using SPADE

112 CHAPTER 4 Association rules

 Next time you visit a nearby grocery store, look around inside the store and notice

the arrangements of various items. You would find shelves with items like milk, eggs,

bread, sugar, washing powder, soaps, fruits, vegetables, cookies, and various other

items neatly stacked. Have you ever wondered about the logic of these arrangements

and how these items are laid out? Why are certain products kept near each other

while others are quite far from one another? Obviously, the arrangement cannot be

done in a random manner, and there has to be scientific reasoning behind it. Or do

you wonder: How does Netflix recommend movies to you based on your movie history

like a sequence? We are going to find the answers to these questions in this chapter.

Like always, we study the concepts first. We go through the mathematical logic for dif-

ferent algorithms, the pros and cons of each, and practical implementations using

Python. A business case study is provided at the end of the chapter to complement the

knowledge. Welcome to the fourth chapter and all the very best!

4.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook we have

used so far. The codes and datasets used in this chapter have been checked in at the

same Github location.

 You will need to install a few Python libraries for this chapter, including apyori,

pyECLAT, fpgrowth_py, and pyspade. Along with this, you will need numpy and pandas.

Using libraries, we can implement the algorithms very quickly. Otherwise, coding

these algorithms from scratch is quite a time-consuming and painstaking task.

 Let’s get started with association rules.

4.2 Association rule overview

You might have heard the famous “beer and diaper story.” As per this anecdote, cus-

tomers (mostly young men) in a supermarket who buy diapers also buy beer in the

same invoice. In other words, young men who are buying diapers for their babies have

quite a high probability of buying beer in the same transaction. We will not comment

on the authenticity of the story, but association rule learning can be attributed as the

logic derived from this story.

 Formally put, association rules can be used to find compelling relationships

between the variables that are present in the datasets. We can use association rules for

measuring the correlations and co-occurrences between the variables in a dataset. In

the example given here (assuming the story is true), one could analyze the daily cus-

tomer transactions. And if a relationship emerges between beer and diapers, it is a

very strong insight for the supermarket, which can allow it to customize their place-

ments of beer and diapers or tailor the marketing strategy or even alter the prices.

 We can understand by a different example in a supermarket. Assume that by ana-

lyzing five invoices generated in a supermarket, we get the data as shown in table 4.1.

In this example, in invoice number 1001 milk is purchased and thus has a value of 1,

whereas cheese is not purchased and thus is 0.

1134.2 Association rule overview

So, in invoice number 1001, milk, eggs, and bread are purchased while in invoice

number 1002, only cheese is purchased. Here we can see that whenever milk and eggs

are purchased together, bread is always purchased in the same invoice. It is an import-

ant discovery indeed.

 Now scale up this understanding to thousands of transactions made in a day. It will

lead to very strong relationships that human eyes are generally oblivious to, but associ-

ation rule algorithms can uncover them for us. This can lead to better product place-

ments, better prices on the products, and much more optimized marketing spending.

Such patterns will enhance the customer experience and prove quite handy to

improve overall customer satisfaction.

 We can visualize association rules

as shown in figure 4.1. Here there

are some incoming variables repre-

sented as nodes 1, 2, 3, 4, etc. These

nodes are related to each other as

shown by the arrows. This relation-

ship between them gives rise to rules

A and B. If we relate back to the

beer/diaper story we mentioned at

the start of this section, rule A can

be that when a young male cus-

tomer buys diapers, they also often

buy beer, while rule B can be that

when milk and eggs are purchased,

often bread is bought too.

 The example of the supermarket

is sometimes referred to as market

basket analysis. But association rules are applicable not only in grocery retail. Their

utility has been proven in other sectors like bioinformatics, the medical industry,

intrusion detection, etc. They can be utilized by Netflix or Spotify to analyze historical

user behavior and then recommend the content the user most likely is going to like.

Web developers can analyze the historical clicks and usages of the customers on their

websites. By identifying the patterns, they can find out what users tend to click and

Table 4.1 Examples of invoices generated in a supermarket

Invoice number Milk Eggs Bread Cheese

1001 1 1 1 0

1002 0 0 0 1

1003 1 1 1 0

1004 0 1 0 1

1005 1 1 0 1

A

B

1

2

3

4

5

6

7

8

Figure 4.1 An association rule can be visualized as the

relationship between various variables in the dataset.

These variables are linked to each other, and significant

relationships are established between them.

114 CHAPTER 4 Association rules

which features will maximize their engagement. Medical practitioners can use associa-

tion rules to better diagnose patients. The doctors can compare the probability of the

symptoms in relationship with other symptoms and provide more accurate diagnoses.

The use cases occur across multiple business domains and business functions.

4.3 The building blocks of association rules

We covered the definition of an association rule in the last section. Now let’s under-

stand the mathematical concept behind association rules. Assume that we have the fol-

lowing datasets in a retail store:

 Let X = {x1, x2, x3, x4, x5 …., xn} are the n items available in the retail store. For

example, they can be milk, eggs, bread, cheese, apples, and so on.

 Let Y = {y1, y2, y3, y4, y5 …., ym } are the m transactions generated in that retail

store. Each transaction could have all or some items from the retail store.

Obviously, each item in the transaction will be bought from the retail store only. In

other words, every item in transactions in set Y will be a subset of items in set X. At the

same time, each item would have a unique identifier attached to it, and each transac-

tion would have a unique invoice number attached to it.

 Now we are interested in analyzing the patterns and discovering the relationships.

This will be used to generate any rule or insight. So let’s define the meaning of the

rule first.

 Assume that we find a rule that whenever items in list P are bought, items in list Q

are also bought. This rule can be written as follows:

1 The rule is P -> Q. It means that whenever items defined in P are bought, it

leads to a purchase in Q too.

2 Items in P will be a subset of X or P  X.

3 Similarly, items in Q will be a subset of X or Q  X.

4 P and Q cannot have any common element or P  Q = 0

Now let’s understand these mathematical concepts with a real-world example. Assume

that X = {milk, bananas, eggs, cheese, apples, bread, salt, sugar, cookies, butter, cold

drinks, water}. These are the total items available in the retail shop.

 Y = {1001, 1002, 1003, 1004, 1005} are the five invoices generated in that retail

store. The respective items purchased in each of these invoices are given in figure 4.2.

Invoice number Milk Bananas Eggs Cheese Apples Bread Salt Sugar Cookies Butter Cold drinks Water

1001 1 1 1 0 0 0 1 0 0 1 1 1

1002 0 0 0 1 0 0 1 0 0 1 0 1

1003 1 1 1 0 1 0 0 0 1 0 0 1

1004 0 1 0 1 1 1 1 0 1 0 0 0

1005 1 1 1 1 0 0 0 1 0 1 1 0

Figure 4.2 Example of five invoices generated in a retail store

1154.3 The building blocks of association rules

Note how for each invoice, we have 0 and 1 associated for each of the items. These

invoices are just for illustration purposes. In the actual invoices, the number of items

can be much more. Using this dataset, let’s assume we create two rules that {milk,

bananas} -> {eggs} and {milk, bananas} -> {bread}.

 The first rule means that whenever milk and bananas are bought together, eggs are

also purchased in the same transaction. The second rule means that whenever milk

and bananas are bought together, bread is also bought in the same transaction. By

analyzing the dataset, we can clearly see that rule 1 is always true whereas rule 2 is not.

NOTE The items on the left side of a rule are called the antecedent or the LHS
and the ones on the right side of a rule are called the consequents or the RHS.

In the real world, for any such rule to have significance, the same pattern must repeat

itself across several hundreds and thousands of transactions. Only then would we con-

clude that the rule is indeed true and can be generalized across the entire database.

 At the same time, there can be many such rules. In a retail shop where thousands of

invoices are generated daily, there can be hundreds of such rules. How can we find out

which rules are significant and which are not? This can be understood using the con-

cepts of support, confidence, lift, and conviction, which we will study in the next section.

4.3.1 Support, confidence, lift, and conviction

We identified the meaning of a rule in an association rule in the last section. We also

understand that there can be hundreds of rules based on the transactional dataset. In

this section, we will explore how we can measure the effectiveness of such rules and

shortlist the most interesting ones. This can be achieved using the concepts of sup-

port, confidence, lift, and conviction.

 Recall in the last section we discussed the generalization of a rule. Support, confi-

dence, lift, and conviction allow us to measure the level of generalization. In simple

terms, using these four parameters, we can determine how useful the rule can be in our

pragmatic real-world business. After all, if a rule is not useful or is not powerful enough,

it is not required to be implemented. Support, confidence, lift, and conviction are the

parameters to check the efficacy of the rule. We look at these concepts in detail next.

 We will use the dataset in table 4.2 to understand the concepts of support, confi-

dence, lift, and conviction. The first invoice, 1001, has milk, eggs, and bread while

cheese is not purchased. Again, for the sake of this example, we have taken only four

items in total.

Table 4.2 Dataset to understand the concept of support, confidence, lift, and conviction

Invoice Number Milk Eggs Bread Cheese

1001 1 1 1 0

1002 0 1 1 1

1003 1 1 1 0

116 CHAPTER 4 Association rules

Here, for an invoice, 1 represents if an item is present in that invoice while 0 shows

that the item was not purchased in that particular invoice. For example, invoice num-

ber 1001 has milk, eggs, and bread while 1002 has eggs, bread, and cheese.

SUPPORT

Support measures the frequency percentage of the items in the datasets. In simpler

terms, it measures the percentage of transactions in which the items are occurring in

the dataset.

 Support can be denoted as follows:

Refer to table 4.2. Say we are interested in the rule {milk, eggs} -> {bread}. In such a

scenario, there are two transactions in which all three items (milk, eggs, and bread)

are present. The total number of transactions is five. This means that the support for

the rule is 2/5, which is 0.4 or 40%.

 Now say we are interested in the rule {bread, eggs} -> {cheese}. In such a scenario,

there is only one transaction in which all three items are present. The total number of

transactions is five. This means that the support for the rule is 1/5, which is 0.2 or 20%.

NOTE The higher the support for a rule, the better it is. Generally, we put a
minimum threshold to get support. A minimum threshold is generally deter-
mined in consultation with the business stakeholders.

CONFIDENCE

Confidence measures how often the rule is true; that is, it measures the percentage of

transactions that contain antecedents that also contain consequents.

 So if we wish to measure the confidence of the rule A -> B:

Here, the numerator is supported when both A and B are present in the transaction,

while the denominator refers to the support only for A.

 Refer to table 4.2. Again, say we are interested in the rule {milk, eggs} -> {bread}. In

such a scenario, there are two transactions in which both milk and eggs are present.

Hence, the support is 2/5 = 0.4. It is the denominator. There are two transactions in

1004 0 1 0 1

1005 0 1 1 0

Table 4.2 Dataset to understand the concept of support, confidence, lift, and conviction (continued)

Invoice Number Milk Eggs Bread Cheese

1174.3 The building blocks of association rules

which all three (milk, eggs, bread) are present. Hence, support is 2/5 = 0.4, which is

the numerator. Putting in the preceding equation, the confidence for the rule {milk,

eggs} -> {bread} is 0.4/0.4 = 1.

 Now say we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,

there are four transactions in which (eggs, bread) are present. The total number of

transactions is five. This means that the support is 4/5, which is 0.8. There is only

one transaction in which all three items (eggs, bread, cheese) are present. So the sup-

port is 1/5 = 0.2. Hence the confidence for the rule {eggs, bread} -> {cheese} is 0.2/

0.8 = 0.25.

NOTE The higher the confidence in the rule, the better it is. Like support, we
put a minimum threshold on confidence.

Sometimes this is also referred to as the conditional probability of A on B. It can be

understood as the probability of B occurring provided A has already occurred and can

be written as P(A|B). So, in the preceding examples, the probability of cheese to be

bought provided eggs, bread is already bought is 25% while the probability of bread to

be purchased, provided milk, eggs are already purchased is 100%.

LIFT AND CONVICTION

Lift is a very important measurement criterium for a rule. Lift for a rule A -> B can be

defined as

Here the numerator is supported when both A and B are present in the transaction,

while the denominator refers to the support for A multiplied by the support for B.

 Again, refer to table 4.2 and say we are interested in the rule {milk, eggs} -> {bread}.

In such a scenario, there are two transactions in which all three (milk, eggs, bread) are

present. Hence, support is again 2/5 = 0.4, which is the numerator. There are two trans-

actions in which only (milk, eggs) are present, so the support is 2/5 = 0.4. There are four

transactions in which bread is present, hence the support is 4/5 = 0.8. Putting in the pre-

ceding equation, the lift for the rule {milk, eggs} -> {bread} is 0.4/(0.4 x 0.8) = 1.25.

 Then say we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,

there is only one transaction in which (eggs, bread, cheese) are present. The total

number of transactions is five. This means that the support is 1/5, which is 0.2. There

are two transactions in which (cheese) is present. So the support is 2/5 = 0.4. There

are four transactions in which (eggs, bread) are present, so the support is 4/5 = 0.8.

Putting in the preceding equation, the lift for the rule {eggs, bread} -> {cheese} is 0.2/

(0.4 x 0.8) = 0.625.

 If the value of the lift is equal to 1, it means that the antecedent and precedent are

independent of each other, and no rule can be drawn from it.

 If the value of lift is greater than 1, it means that the antecedent and precedent are

dependent on each other. This rule can be used for predicting the antecedent in

future transactions. This is the insight we want to draw from the dataset.

118 CHAPTER 4 Association rules

 If the value of lift is less than 1, it means that the antecedent and precedent are sub-

stitutes of each other. The presence of one can have a negative effect on the other. It is

also an important insight that can be used by the business teams for strategic planning.

 While we evaluate any rule using the lift, it is imperative that we apply domain

knowledge to it. For example, if we evaluate the rule {eggs, bread} -> {cheese} and if we

find that eggs, bread can be a substitute for cheese, we know that it is not true in real

life. Hence, in such a scenario we cannot make any decision for this role. We must use

domain knowledge to draw any conclusions for this rule.

 At the same time, rule {milk, eggs} -> {bread} might be a rule that can be true many

times. For many customers, when they purchase milk and eggs together, it is highly

likely that bread will be purchased in the same transaction. Hence this rule makes

much more sense for such customers. The objective is to have a strong business logic

to either support or disapprove a rule identified using the algorithm.

 Conviction is another important parameter, which is given by the following

formula:

Refer to table 4.2. Again, say we are interested in the rule {eggs, bread} -> {cheese}. In

such a scenario, there is only one transaction in which (cheese) is present. The total

number of transactions is five. So, it means that the support is 1/5, which is 0.2 and will

be used in the numerator. We have already calculated the confidence as 0.625. Putting

back in the formula, we can calculate conviction as (1 – 0.2)/(1 – 0.625) = 2.13

 We can interpret the conviction as: the rule {eggs, bread} -> {cheese} would be

incorrect 2.13 times more often if the association between {eggs, bread, cheese} was

purely chosen at random.

 In most of the business scenarios, lift is the measurement criteria used. There are

other measurement parameters, too, like leverage, collective strength, etc. But most of

the time, confidence, support, lift, and conviction are used to measure the effective-

ness of any rule.

While we evaluate any rule while analyzing the dataset, most of the time, we set a

threshold for the confidence, support, lift, and conviction. It allows us to reduce the

number of rules and filter out the irrelevant ones. In other words, we are interested in

Exercise 4.1

Answer these questions to check your understanding:

1 Support measures how often the rule is present in the dataset. True or False?

2 If the lift is greater than 1, it means that the two items are independent of each
other. True or False?

3 The lower the value of confidence, the better the rule. True or False?

1194.4 Apriori algorithm

only the rules that are very frequent. We will study this in more detail when we create

a Python solution for a dataset.

4.4 Apriori algorithm

The Apriori algorithm is one of the most popular algorithms used for association

rules. It was proposed by Agrawal and Shrikant in 1994. The link to the paper is given

at the end of the chapter.

 Apriori is used to understand and analyze the frequent items in a transactional

database. It utilizes a “bottom-up” approach where the first candidates are generated

based on the frequency of the subsets. Let us understand the entire process by means

of an example. We will use the same dataset we have discussed earlier (see table 4.2).

The process used in the Apriori algorithm will look like figure 4.3.

Figure 4.3 The Apriori algorithm process

Let us say we wish to analyze the relationship of bread with all the other items in the

dataset. In this case, level 1 is bread, and we find its frequency of occurrence.

 Then we move to the next layer, which is layer 2. Now we find the relationship of

bread with each of the other items: milk, eggs, and cheese, which are at layer 2. Here

again we find the respective frequencies of occurrence for all the possible combina-

tions, which are {bread, milk}, {bread, eggs}, and {bread, cheese}. See figure 4.4.

Figure 4.4 We have bread at level 1 while the other items (milk, eggs, and cheese) are kept at level 2.

Bread is kept at level 1 since we wish to analyze the relationship of bread with all the other items.

Bread

EggsMilk Cheese

Eggs Cheese

Cheese Eggs

Milk Cheese

Cheese Milk

Eggs Milk

Milk Eggs

Level 1

Level 2 Level 2 Level 2

Bread

EggsMilk Cheese

120 CHAPTER 4 Association rules

After layer 2 has been analyzed, we move to the third layer and fourth layer and so on.

This process continues until we reach the last layer wherein all the items have been

exhausted.

 As a result of this process, we can calculate the support for all the possible combi-

nations. For example, we would know the support for

{bread} -> {milk},

{bread} -> {eggs}, and

{bread} -> {cheese}.

For the next level, we would also get the support for

{bread, milk} -> {eggs},

{bread, eggs} -> {milk},

{bread, milk} -> {cheese},

{bread, cheese} -> {milk},

{bread, cheese} -> {eggs}, and

{bread, eggs} -> {cheese}.

Now, using the same process, all the possible combinations for the next level are cal-

culated. For example, {bread, eggs, milk} -> {cheese}, {bread, eggs, cheese} -> {milk},

and so on.

 When all the item sets have been exhausted, the process will stop. The complete

architecture can look like figure 4.5.

 Now we can easily understand that the possible number of combinations is quite

high, which is one of the challenges with Apriori. But Apriori is quite a powerful algo-

rithm and is very popular too. Now it’s time to implement Apriori using Python.

Figure 4.5 The complete architecture for the Apriori algorithm. Here we would have calculated support

for all the possible combinations. The relationships between all the items are explored, and because of

this entire database scan, the speed of Apriori gets hampered.

Bread

EggsMilk Cheese

Eggs Cheese

Cheese Eggs

Milk Cheese

Cheese Milk

Eggs Milk

Milk Eggs

Level 1

Level 2 Level 2 Level 2

Level 3 Level 3Level 3 Level 3

Level 4Level 4 Level 4Level 4

Level 3

Level 4

1214.4 Apriori algorithm

4.4.1 Python implementation

We will now proceed with Python implementation of the Apriori algorithm. The data-

set and Python Jupyter Notebook are checked in at the GitHub repository. You might

have to install apyori.

 To install the libraries, simply do the following:

import sys
!{sys.executable} -m pip install apyori

The steps are as follows:

1 Import the necessary libraries for the use case. We are importing numpy and

pandas. For implementing Apriori, we have a library called apyori, which is

also imported:

import numpy as np
import pandas as pd
from apyori import apriori

2 Import the dataset store_data.csv file:

store_dataset = pd.read_csv('store_data.csv')

You are also advised to have a look at the dataset by opening the .csv file. It will look

like the screenshot in figure 4.6. The first 25 rows are shown in the screenshot. Each

row represents an invoice.

Figure 4.6 Screenshot of the .csv file

122 CHAPTER 4 Association rules

3 Next we perform some basic checks on the data by the .info and.head com-

mands (see figure 4.7):

store_dataset.info()

store_dataset.head()

Figure 4.7 Output for .info and .head commands

4 Here we can see that the first transaction has been considered the header by

the code. Hence, we would import the data again, but this time we would spec-

ify that headers are equal to None:

store_dataset = pd.read_csv('store_data.csv', header=None)

1234.4 Apriori algorithm

5 Let’s look at the head again (see figure 4.8). This time it looks correct:

store_dataset.head()

Figure 4.8 Correct results for .head()

6 The library we are using for the code accepts the dataset as a list of lists. The

entire dataset must be a big list while each transaction is an inner list in the big

list. So, to achieve it, we first convert our store_dataset dataframe into a list:

all_records = []
for i in range(0, 7501):
 all_records.append([str(store_dataset.values[i,j]) for j in

range(0, 20)])

7 Next, we implement the Apriori algorithm.

For the algorithm, we are working on the all_records list we created in step 6. The

minimum support specified is 0.5 or 50%, the minimum confidence is 25%, the mini-

mum lift is 4, and the minimum length of the rule is 2.

 The output of this step is the apriori_rules class object. This object is then con-

verted into a list that we can understand. Finally, we print this list:

apriori_rules = apriori(all_records, min_support=0.5, min_confidence=0.25,
min_lift=4, min_length=2)

apriori_rules = list(apriori_rules)
print(len(apriori_rules))

The output of the code will be 0. This means that no such rules exist that satisfy the

condition we have set for the rules.

 We again try to execute the same code, albeit by reducing the minimum support to

25%:

apriori_rules = apriori(all_records, min_support=0.25, min_confidence=0.25,
min_lift=4, min_length=2)
apriori_rules = list(apriori_rules)
print(len(apriori_rules))

124 CHAPTER 4 Association rules

Again, no rules are generated and the output is 0. Even reducing the minimum sup-

port to 10% does not lead to any rules:

apriori_rules = apriori(all_records, min_support=0.1, min_confidence=0.25,
min_lift=4, min_length=2)
apriori_rules = list(apriori_rules)
print(len(apriori_rules))

Now we reduce the minimum lift to 2. This time we get 200 as the output. This means

that there are 200 such rules that fulfill the criteria:

apriori_rules = apriori(all_records, min_support=0.25, min_confidence=0.25,
min_lift=2, min_length=2)
apriori_rules = list(apriori_rules)
print(len(apriori_rules))

8 Let’s look at the first rule (see figure 4.9):

print(apriori_rules[0])

Figure 4.9 Output from print(apriori_rules[0])

The rule explains the relationship between almonds and burgers. The support is .005,

and the confidence is 0.25. Lift, which is 2.92, indicates that this rule is quite strong.

9 We will now look at all the rules in detail. For that, loop through the rules and

extract information from each of the iterations. Each of the rules has the items

constituting the rule and respective values for support, confidence, lift, and

conviction. We have shown an example in step 8. Now, in step 9, we are just

extracting that information for all the rules using a for loop:

for rule in apriori_rules:
 item_pair = rule[0]
 items = [x for x in item_pair]
 print("The apriori rule is: " + items[0] + " -> " + items[1])

 print("The support for the rule is: " + str(rule[1]))

 print("The confidence for the rule is: " + str(rule[2][0][2]))
 print("The lift for the rule is: " + str(rule[2][0][3]))
 print("************************")

The output for this step is shown in figure 4.10. Here we can observe each rule is

listed along with the respective values of support, confidence, lift, and conviction.

RelationRecord(items=frozenset({'almonds', 'burgers'}), support=0.005199306759098787,
ordered_statistics=[OrderedStatistics(items_base=frozenset({'almonds'}),
item_add=frozenset({'burgers'}), confidence=0.25490196078431376, lift=2.923577382023146)])

print(apriori_rules[0])

1254.4 Apriori algorithm

Figure 4.10 Output for step 9

We can interpret the rules easily. For example, the rule almonds -> burgers has a lift of

2.92 with a confidence of 25.49% and support of 0.51%. This concludes our imple-

mentation using Python. This example can be extended to any other real-world busi-

ness dataset.

NOTE Not all the rules generated are not worth using. We will examine how
to get the best rules from all the rules generated when we deal with the case
study in the last section of the chapter.

The Apriori algorithm is a robust and very insightful algorithm. But, like any other

solution, it has a few shortcomings.

4.4.2 Challenges with the Apriori algorithm

As we have seen, the number of subsets generated in the Apriori algorithm is quite

high (see figure 4.5). It is very tedious to generate candidates’ item sets, and hence it

becomes quite cumbersome to analyze the dataset. Apriori scans the entire dataset

multiple times, and hence it requires the database to be loaded in the memory. We

can safely deduce that it requires a lot of time to make the computations. This prob-

lem is magnified when we are dealing with a very large dataset. In fact, for real-world

problems where millions of transactions are generated, quite a huge number of candi-

date item sets are generated, and it is very time-consuming to use Apriori on the

entire dataset.

126 CHAPTER 4 Association rules

 Due to this very reason, generally, a minimum value of support is set to reduce the

number of possible rules. In the previous example, we can calculate the support for

level 1 combinations, as shown in table 4.3. Here, if we set the minimum value of sup-

port as 0.5, only one rule will be shortlisted. Support is calculated for each of the com-

bination of the items. For example, for milk and bread, the number of transactions is

2, while the total number of transactions is 5. So the support is 2/5, which is 0.4.

Setting up a minimum value of support is hence an intelligent tactic to make the rules

much more manageable. It reduces the time and generates rules that are much more

significant. After all, the rules generated from the analysis should be generalizable

enough so that they can be implemented across the entire database.

But the Apriori algorithm is indeed a great solution. It is still highly popular and gen-

erally one of the very first algorithms brought up whenever association rules are

discussed.

NOTE Data preparation is one of the key steps and quite a challenge. We will
explore this challenge during the case study in section 4.8.

4.5 Equivalence class clustering and bottom-up
lattice traversal

We will now study the equivalence class clustering and bottom-up lattice traversal algo-

rithm (ECLAT), which sometimes is considered better than Apriori in terms of speed

and ease of implementation. ECLAT uses a depth-first search approach. This means

Table 4.3 Support for level 1 combinations

Combination Number of transactions Total transactions Support

Milk, Eggs 2 5 0.4

Milk, Bread 2 5 0.4

Milk, Cheese 0 5 0

Eggs, Bread 4 5 0.8

Eggs, Cheese 2 5 0.4

Bread, Cheese 1 5 0.2

Exercise 4.2

Answer these questions to check your understanding:

1 The Apriori algorithm scans the database only once. True or False?

2 If bananas are present in 5 transactions out of a total of 12 transactions, it
means the support for bananas is 5/12. True or False?

1274.5 Equivalence class clustering and bottom-up lattice traversal

that ECLAT performs the search in a vertical fashion throughout the dataset. It starts

at the root node and then goes one level deep and continues until it reaches the first

terminal note. Let’s say the terminal node is at level X. Once the terminal node is

reached, the algorithm then takes a step back and reaches level (X – 1) and continues

until it finds a terminal node again. Let’s understand this process by means of a tree

diagram, as shown in figure 4.11.

Figure 4.11 Tree diagram to understand the process of the ECLAT algorithm. It starts with 1 and ends

at 16.

ECLAT will take the following steps:

1 The algorithm starts at the root node 1.

2 It then goes one level deep to root node 2.

3 It will then continue one more level deep until it reaches terminal node 11.

4 Once it reaches terminal node 11, it then takes a step back and goes to node 5.

5 The algorithm then searches if there is any node available that can be used. At

node 5 we can see that there is no such node available.

6 Hence, the algorithm again takes a step back and reaches node 2.

7 At node 2, the algorithm explores again. It finds that it is possible to go to node 6.

8 So, the algorithm goes to node 6 and starts exploring again until it reaches ter-

minal node 12.

9 This process continues until all the combinations have been exhausted.

Obviously, the speed of computation depends on the total number of distinct items

present in the dataset. This is because the number of distinct items defines the width

of the tree. The items purchased in each of the transactions would define the relation-

ship between each node.

 During the execution time of ECLAT, each item (either individually or in a pair) is

analyzed. Let us use the same example we have used for Apriori to understand ECLAT

better. Refer to table 4.2.

1

32 4

5 6

11 12

7 8

13 14

9 10

15 16

128 CHAPTER 4 Association rules

 ECLAT will undergo the following steps to analyze the dataset:

1 In the first run, ECLAT will find the invoice numbers for all single items. In

other words, it will find the invoice numbers for all the items individually. It is

shown in table 4.4, wherein milk is present in invoice numbers 1001 and 1003,

while eggs are present in all five invoices.

2 In the next step, all the two-item datasets are explored as shown in table 4.5. For

example, milk and eggs are present in invoice numbers 1001 and 1003, while

milk and cheese are not present in any invoice.

3 In the next step, all three-item datasets are explored, as shown in table 4.6.

Here we have two combinations only.

4 There are no invoices present in our dataset that contain four items.

5 Now, depending on the threshold we set for the value of the support count, we

can choose the rules. So, if we want the minimum number of transactions in

Table 4.4 Respective invoices in which each item is present

Item Invoice numbers

Milk 1001, 1003

Eggs 1001, 1002, 1003, 1004, 1005

Bread 1001, 1002, 1003, 1005

Cheese 1002, 1004

Table 4.5 Two-item datasets

Item Invoice numbers

Milk, Eggs 1001 ,1003

Milk, Bread 1001, 1003

Milk, Cheese —

Eggs, Bread 1001, 1002, 1003, 1005

Eggs, Cheese 1002, 1004

Bread, Cheese 1002

Table 4.6 Three-item datasets

Item Invoice numbers

Milk, Eggs, Bread 1001, 1003

Eggs, Bread, Cheese 1002

1294.5 Equivalence class clustering and bottom-up lattice traversal

which the rule should be true to be three, then only one rule qualifies, which is

{eggs, bread}. If we decide the threshold for the minimum number of transac-

tions is two, then rules like {milk, eggs, bread}, {milk, eggs}, {milk, bread}, {eggs,

bread}, and {eggs, cheese} qualify as the rules.

We will now create a Python solution for ECLAT.

4.5.1 Python implementation

We will now work on the execution of ECLAT using Python. We use the pyECLAT

library here. The dataset looks like figure 4.12.

Figure 4.12 ECLAT for the pyECLAT library using Python

The steps are as follows:

1 Import the libraries:

import numpy as np
import pandas as pd
from pyECLAT import ECLAT

2 Import the dataset:

data_frame = pd.read_csv('Data_ECLAT.csv', header = None)

3 Generate an ECLAT instance:

eclat = ECLAT(data=data_frame)

130 CHAPTER 4 Association rules

There are some properties of ECLAT instance eclat generated in the last step like

eclat.df_bin, which is a binary dataframe, and eclat.uniq_, which is a list of all the

unique items.

4 Fit the model. We give a minimum support of 0.02 here. After that, we print the

support:

get_ECLAT_indexes, get_ECLAT_supports = eclat.fit(min_support=0.02,
 min_combination=1,
 max_combination=3,
separator=' & ')
get_ECLAT_supports

The output is shown in figure 4.13.

Figure 4.13 Output for step 4

We can interpret the results provided based on the support. For each of the items and

combination of items, we are getting the value of the support. For example, for french

fries and eggs, the value of support is 3.43%.

 ECLAT has some advantages over the Apriori algorithm. Since it uses a depth-

search approach, it is faster than Apriori and requires less memory to compute. It

does not scan the dataset iteratively, and that makes it even faster than Apriori. We will

compare these algorithms once more after we have studied the last algorithm.

4.6 F-P algorithm

The F-P algorithm is the third algorithm we discuss in this chapter. It is an improve-

ment over the Apriori algorithm. Recall in Apriori we face the challenges of time-con-

suming and costly computations. F-P resolves these problems by representing the

1314.6 F-P algorithm

database in the form of a tree called a frequent pattern tree or FP tree. Because of this fre-

quent pattern, there is no need to generate the candidates as done in the Apriori algo-

rithm. Let’s discuss F-P in detail now.

 An F-P tree is a tree-shaped structure, and it mines the most frequent items in the

datasets. This is visualized in figure 4.14.

Figure 4.14 An F-P algorithm can be depicted in a tree-diagram structure. Each node represents a

unique item. The root node is NULL.

Each node represents a unique item in the dataset. The root node of the tree is gener-

ally kept as NULL. The other nodes in the tree are the items in the dataset. The nodes

are connected with each other if they are in the same invoice. We will study the entire

process in a step-by-step fashion.

 Assume we are using the dataset shown in table 4.7. So we have the unique items as

Apples, Milk, Eggs, Cheese, and Bread. There are nine transactions, and the respec-

tive items in each of the transactions are shown in table 4.7.

Table 4.7 Dataset to understand the F-P algorithm

Transactions Item sets

T1 Apples, Milk, Eggs

T2 Milk, Cheese

T3 Milk, Bread

T4 Apples, Milk, Cheese

NULL

Milk:7

Apples:4

Eggs:1

Cheese:1 Bread:2

Cheese:1

Apples:2

Bread:2

Bread:2

Eggs:1

132 CHAPTER 4 Association rules

Let’s apply the F-P algorithm on this dataset now. The steps are as follows:

1 Like Apriori, the entire dataset is scanned first. Occurrences for each of the

items is counted, and a frequency is generated. The results are suggested in

table 4.8. We have arranged the items in descending order of the frequency or

the respective support count in the entire dataset. For example, apples have

been purchased in six transactions.

If two items have exactly same frequency, either can be ordered first. In the
example here, Bread and Apples have the same frequency. So we can keep
either Bread or Apples as the first one.

2 Start the construction of the F-P tree. We start with creating the root node,

which is generally the NULL node, in figure 4.15.

3 Analyze the first transaction, T1. Here we have Apples, Milk, and Eggs in the

first transaction. Out of these three, Milk has the highest support count, which

T5 Apples, Bread

T6 Milk, Bread

T7 Apples, Bread

T8 Apples, Milk, Bread, Eggs

T9 Apples, Milk, Bread

Table 4.8 Respective frequency for each of the item sets

Item Frequency or support count

Milk 7

Apples 6

Bread 6

Cheese 2

Eggs 2

Table 4.7 Dataset to understand the F-P algorithm (continued)

Transactions Item sets

NULL

Figure 4.15 The root node for the tree is generally kept NULL.

1334.6 F-P algorithm

is 7. So a connection is extended from the root node to Milk, and we denote it

as Milk:1 (see figure 4.16).

4 Now look at the other items in T1. Apples has a support count of 6 and Eggs

have a support count of 2. So we will extend the connection from Milk to

Apples and name it Apples:1 and then from Apples to Eggs and call it Eggs:1

(see figure 4.17).

5 Look at T2 now. It has Milk and Cheese. Milk is already connected to the root

node. So the count for Milk becomes 2, and it becomes Milk:2. Next, we will

create a branch from Milk to Cheese and name it Cheese:1. The addition is

shown in figure 4.18.

Figure 4.18 Step 5 of the process where we

started to analyze T2. Milk is already connected,

so its count increases by 2 while Cheese gets

added to the tree.

6 Consider T3. T3 has Milk and Bread. So, similar to step 5, the count for Milk is

3, and it becomes Milk:3. And, similar to step 5, we add another connection

NULL

Milk:1 Figure 4.16 Connection from the root node to Milk. Milk

has the highest support; hence we have chosen Milk.

NULL

Milk:1

Apples:1

Eggs:1

Figure 4.17 Step 4 of the process

where we have finished all the items in

T1. All the items—Milk, Apples, and

Eggs—are now connected.

NULL

Milk:2

Apples:1

Eggs:1

Cheese:1

134 CHAPTER 4 Association rules

from Milk to Bread and call it Bread:1. The updated tree is shown in figure

4.19.

7 In T4, we have Apples, Milk, and Cheese. The count for Milk becomes 4; for

Apples it is now 2. Then we create a branch from Apples to Cheese, calling it

Cheese:1 (see figure 4.20).

Figure 4.20 In step 7 of the process, T4 is being analyzed. The count of

Milk becomes 4, for Apples it increases to 2, and a new branch from

Apples to Cheese is added.

8 We find in T5 that we have Apples and Bread. Both are not directly connected

to the root node and have an equal frequency of 6. So we can take either to be

connected to the root node. The figure gets updated to figure 4.21.

NULL

Milk:3

Apples:1

Eggs:1

Cheese:1 Bread:1

Figure 4.19 In step 6, T3 is

analyzed. Milk’s count

increased by 1 more and

becomes 3, while Bread is

added as a new connection.

NULL

Milk:4

Eggs:1

Cheese:1 Bread:1

Cheese:1

Apples:2

1354.6 F-P algorithm

Figure 4.21 After analyzing T5, the diagram changes, as shown here. We have Apples and

Bread, which get added to the tree.

9 This process continues until we exhaust all the transactions, resulting in the

final figure as shown in figure 4.22.

Figure 4.22 The final tree once we have exhausted all the possible combinations

Great job so far! But there are more steps after this. So far, we have created only the

tree. Now we need to generate the dataset as shown in table 4.9. This is the output we

wish to generate.

NULL

Milk:4

Apples:2

Eggs:1

Cheese:1 Bread:1

Cheese:1

Apples:1

Bread:1

NULL

Milk:7

Apples:4

Eggs:1

Cheese:1 Bread:2

Cheese:1

Apples:2

Bread:2

Bread:2

Eggs:1

136 CHAPTER 4 Association rules

You might be wondering why there are only four items listed. Since Milk has directly

originated from the root node and there is no other way to reach it, we need not have

a separate row for Milk.

10 Before continuing, we must fix the minimum support count as 2 for any rule to

be acceptable. We do this for simplicity’s sake as the dataset is quite small.

NOTE For real-life business problems, you are advised to test with multiple
and even much higher values for the support counts; otherwise, the number
of rules generated can be very high.

Let’s start with Cheese as the first item. We can reach cheese through {NULL-Milk-

Cheese} and {NULL-Milk-Apples-Cheese}. For both paths, the count of Cheese is 1.

Hence, (if we ignore NULL) our conditional pattern base is {Milk-Cheese} or {Milk:1}

and {Milk-Apples:Cheese} or {Milk-Apples:1}. The complete conditional pattern base

becomes {{Milk:1}, {Milk-Apples:1}}. This information is added to the second column

of table 4.10.

11 Now if we add the two values in a conditional pattern base, we would get Milk as

2 and Apples as 1. Since we have set up a threshold for the frequency count of

2, we will ignore the count of Apples. The value for the conditional F-P tree,

which is the third column in the table, becomes {Milk:2}. Now we simply add the

original item to this, which becomes the frequent patten generated or column

4. See table 4.11.

Table 4.9 Table for the F-P algorithm

Items
Conditional

pattern base

Conditional

F-P tree

Frequent pattern

generated

Cheese

Bread

Eggs

Apples

Table 4.10 Step 10 of the process where we have filled the first cell for Cheese

Items
Conditional

pattern base

Conditional

F-P tree

Frequent pattern

generated

Cheese {{Milk:1}, {Milk-Apples:1}}

Bread

Eggs

Apples

1374.7 Sequence rule mining

12 In a similar fashion, all the other cells are filled in the table, resulting in the

final table (table 4.12).

It is a complex process indeed. But once the steps are clear, it is straightforward.

 As a result of this exercise, we have received the final set of rules as depicted in the

final column Frequent Pattern Generated.

NOTE Notice that none of the rules are similar to each other.

We will use the final column, Frequent Pattern Generated, as the rules for our dataset.

 The Python implementation for the F-P growth algorithm is quite simple and is

easy to compute using the libraries. In the interest of space, we have uploaded the

Jupyter notebook to the GitHub repository of the chapter.

 We will now explore another interesting topic: sequence rule mining. It is a very

powerful solution that allows a business to tailor its marketing strategies and product

recommendations to the customers.

4.7 Sequence rule mining

Consider this: Netflix has a transactional database of all the movies ordered by cus-

tomers over time. If it analyzes and finds that 65% of customers who viewed a war

movie X also viewed a romantic comedy Y in the following month, then this is very

insightful and actionable information. It will allow Netflix to recommend its offerings

to customers and customize its marketing strategy.

Table 4.11 Step 11 of the process where we have finished the details for the item Cheese

Items
Conditional

pattern base

Conditional

F-P tree

Frequent pattern

generated

Cheese {{Milk:1}, {Milk-Apples:1}} {Milk:2} {Milk-Cheese:2}

Bread

Eggs

Apples

Table 4.12 Final table after we have analyzed all the combinations for the items

Items
Conditional

pattern base

Conditional

F-P tree

Frequent pattern

generated

Cheese {{Milk:1}, {Milk-Apples:1}} {Milk:2} {Milk-Cheese:2}

Bread {{Milk-Apples:2}, {Milk:2},

{Apples:2}}

{{Milk:4, Apples:2},

{Apples:2}}

{{Milk-Bread:4}, {Apples-Bread:4},

{Milk-Apples-Bread:2}}

Eggs {{Milk-Apples:1}, {Milk-

Apples-Bread:1}}

{Milk:2, Apples:2} {{Milk-Eggs:2}, {Milk-Apples:2},

{Milk-Apples:2}}

Apples {Milk:4} {Milk:4} {Milk-Apples:4}

138 CHAPTER 4 Association rules

 So far in the chapter, we have covered three algorithms for association rules. But

all the data points were limited to the same dataset, and there was no sequencing

involved. Sequential pattern mining allows us to analyze a dataset that has a sequence

of events happening. By analyzing the dataset, we can find statistically relevant pat-

terns, which allows us to decipher the entire sequence of events. Obviously, the

sequence of events is in a particular order, which is a very important property to be

considered during sequence rule mining.

NOTE Sequence rule mining is different from time-series analysis. To learn
more about time-series analysis, refer to the appendix.

Sequence rule mining is utilized across multiple domains and functions. It can be

used in biology to extract information during DNA sequencing, or it can be used to

understand the online search pattern of a user. Sequence rule mining would help us

understand what the user is going to search next. During the discussion of association

rules, we used the transactions in which milk, bread, and eggs were purchased in the

same transaction. Sequence rule mining is an extension to that wherein we analyze

consecutive transactions and try to decipher the sequence present, if any.

 While studying the Sequential Pattern Discovery Using Equivalence classes

(SPADE) algorithm, we cover the mathematical concepts that form the base of the

algorithm. These concepts are a little tricky and might require more than one reading

to grasp.

4.7.1 Sequential Pattern Discovery Using Equivalence

We now explore sequence rule mining using SPADE. It was suggested by Mohammed

J. Zaki; the link to the paper is at the end of this chapter.

 So we wish to analyze a sequence of events. For example, a customer bought a

mobile phone and a charger. After a week, they bought earphones, and after two

weeks, they bought a mobile phone cover and screen guard. So, in each of the transac-

tions, there were items purchased. And each transaction can be called an event. Let’s

understand it in more detail.

 Let us assume we have the complete list of items for the discussion. t will contain

items like i1, i2, i3, i4, i5, and so on. So we can write I = {i1, i2, i3, i4, i5………, in} where

we have n distinct items in total.

 Items can be anything. If we consider the same example of a grocery store, items

can be milk, eggs, cheese, bread, and so on.

 An event will be a collection of items in the same transaction. An event can contain

items like (i1, i5, i4, i8). For example, an event can contain items bought in the same

transaction (milk, sugar, cheese, bread). We will denote an event by ⍺.

 Next, let’s understand a sequence. A sequence is nothing but events in an order. In

other words, ⍺1 -> ⍺2 -> ⍺3 -> ⍺4 can be termed a sequence of events. For example,

(Milk, Cheese) -> (Bread, Eggs) -> (Cheese, Bread, Sugar) -> (Milk, Bread) is a

sequence of transactions. It means that in the first transaction, milk and cheese were

bought. In the following transaction, bread and eggs were bought, and so on.

1394.7 Sequence rule mining

 A sequence with k items is a k-item sequence. For example, sequence (Milk, Bread)

-> (Eggs) contains three items. Now let’s explore the SPADE algorithm step by step.

 Let’s say we have the following sequences generated. In the first sequence, ID

1001, Milk is bought in the very first transaction. In the second one, Milk, Eggs, and

Bread are bought. They are followed by Milk and Bread. In the fourth one, only Sugar

is purchased. In the fifth and final transaction of sequence 1001, Bread and Apples

are purchased; this is applicable to all the respective sequences. For example, in

sequence ID 1001, we have multiple events. In the first purchase, Milk is bought. Then

(Milk, Eggs, Bread) are bought and so on. See table 4.13.

Table 4.13 can be converted into a vertical data format as shown in table 4.14. In this

step, we calculate the frequencies for one-sequence items, which are sequences with

only one item. For this, only a single database scan is required. We simply have the

sequence ID and element ID for each of the items.

Table 4.13 The dataset for sequence mining

Sequence ID Sequence

1001 <(Milk) (Milk, Eggs, Bread) (Milk, Bread) (Sugar) (Bread, Apples)>

1002 <(Milk, Sugar) (Bread) (Eggs, Bread) (Milk, Cheese)>

1003 <(Cheese, Apples) (Milk, Eggs) (Sugar, Apples) (Bread) (Eggs)>

1004 <(Cheese, Bananas) (Milk, Apples) (Bread) (Eggs) (Bread)>

Table 4.14 Vertical format for table 4.13

Sequence ID Element ID Items

1001 1 Milk

1001 2 Milk, Eggs, Bread

1001 3 Milk, Bread

1001 4 Sugar

1001 5 Bread, Apples

1002 1 Milk, Sugar

1002 2 Bread

1002 3 Eggs, Bread

1002 4 Milk, Cheese

1003 1 Cheese, Apples

1003 2 Milk, Eggs

1003 3 Sugar, Apples

1003 4 Bread

140 CHAPTER 4 Association rules

Table 4.14 is nothing but a vertical tabular representation of table 4.13. For example,

in sequence ID 1001, at the element ID 1 we have Milk. For sequence ID 1001, at the

element ID 2 we have Milk, Eggs, Bread, and so on.

 For the purpose of explanation, we are considering only two items—0 Milk and

Eggs—and the support threshold of 2.

 Then, in the next step, we will break it down for each of the items. For example,

Milk appears in sequence ID 1001 and element ID 1, sequence ID 1001 and element

ID 2, sequence ID 1001 and element ID 3, sequence ID 1002 and element ID 1, and so

on. It results in a table like table 4.15 where we have shown Milk and Eggs. It needs to

be applied to all the items in the dataset.

Now we wish to count two sequences or those with two-item sequences. We can have

two sequences: either Milk -> Eggs or Eggs -> Milk. Let’s first take Milk -> Eggs.

 For Milk -> Eggs, we need to have Milk in front of Eggs. For the same sequence ID,

if the element ID of Milk is less than the element ID of Eggs, then it is an eligible

sequence. In the preceding example, for sequence ID 1001, the element ID of Milk is

1, while the element ID of Eggs is 2. So we can add that as the first eligible pair, as

1003 5 Eggs

1004 1 Cheese, Bananas

1004 2 Milk, Apples

1004 3 Bread

1004 4 Eggs

1004 5 Bread

Table 4.15 Respective sequence IDs for Milk and Eggs

Milk Eggs

Sequence ID Element ID Sequence ID Element ID

1001 1 1001 2

1001 2 1002 3

1001 3 1003 2

1002 1 1003 5

1002 4 1004 4

1003 2

1004 2

Table 4.14 Vertical format for table 4.13 (continued)

Sequence ID Element ID Items

1414.7 Sequence rule mining

shown in the first row of table 4.16. The same is true for sequence ID 1002. In table

4.15, row 4, we have sequence ID 1002. The element ID of Milk is 1, while that of Eggs

in row 2 is 3. Again, the element ID of Milk is lesser than the element ID of Eggs, so it

becomes the second entry, and the process continues. The key point is to have the

same sequence ID while comparing the respective element IDs of Milk and Eggs.

By using the same logic, we can create the table for Eggs -> Milk, which is shown in

table 4.17. Again, the key point is to have the same sequence ID while comparing the

respective element IDs of Milk and Eggs.

This can be done for each of the possible combinations. We now move to creating

three-item sequences, and we will create Milk, Eggs -> Milk. For this purpose, we have

to join the two tables. See table 4.18.

Table 4.16 Sequence for Milk and Eggs

Milk and Eggs

Sequence ID Element ID (Milk) Element ID (Eggs)

1001 1 2

1002 1 3

1003 2 5

1004 2 4

Table 4.17 Sequence for Eggs and Milk

Eggs and Milk

Sequence ID Element ID (Eggs) Element ID (Milk)

1001 2 3

1002 3 4

Table 4.18 Combining the sequence Milk -> Eggs and Eggs -> Milk to join the tables

Milk and Eggs Eggs and Milk

Sequence ID
Element ID

(Milk)

Element ID

(Eggs)
Sequence ID

Element ID

(Eggs)

Element ID

(Milk)

1001 1 2 1001 2 3

1002 1 3 1002 3 4

1003 2 5

1004 2 4

142 CHAPTER 4 Association rules

The logic of joining is matching the sequence ID and the element ID. We have high-

lighted the matching ones in red and green, respectively, although this will not show up

in the printed book. For sequence ID 1001, the element ID of Eggs in the left table

matches the element ID of Eggs in the right table, and that becomes the first entry of table

4.19, which shows the results. Similarly, for sequence ID 1002, element ID 3 matches.

This process continues. The algorithm stops when no frequent sequences can be found.

 We will now implement SPADE on a dataset using Python. We use the pyspade

library, and thus we have to load the dataset and call the function. It generates the result

for us. The support is kept as 0.6 here, and then we print the results (see figure 4.23):

from pycspade.helpers import spade, print_result
spade_result = spade(filename='SPADE_dataset.txt', support=0.6, parse=True)
print_result(spade_result)

4.8 Case study for association rules

Association rule mining is quite a helpful and powerful solution. Next, we are going to

solve an actual case study using association rules. Recall that, at the start of the

Table 4.19 Final table after we have analyzed all the combinations for the items

Milk, Eggs -> Milk

Sequence ID Element ID (Milk) Element ID (Eggs) Element ID (Milk)

1001 1 2 3

1002 1 3 4

Figure 4.23 SPADE implemented on the

pyspade library using Python

1434.8 Case study for association rules

chapter, we suggested you study the pattern of a grocery store. What is the logic of

such arrangements in the store?

 Consider this: you are working for a grocery retailer like Walmart, Tesco, Spar,

Marks & Spencer’s, etc., and you are planning the visual layout of a new store. Obvi-

ously, it is imperative that retail stores utilize the space in the store wisely and to the

maximum capacity. At the same time, it is vital that the movement of the customers is

not hindered. Customers should have access to all the items on display and be able to

navigate easily. You might have experienced some stores where you feel choked and

bombarded with displays while others are neatly stacked.

 How do we solve this problem? There can be multiple solutions. Some retailers

might wish to group the items based on their categories. For example, they might

want to keep all the baking products on one shelf or use some other condition. We are

studying the machine learning example here.

 Using market basket analysis, we can generate the rules that indicate the respective

relationships between various items. We can predict which items are frequently

bought together, and they can be kept together in the store. For example, if we know

that milk and bread are bought together, then bread can be kept near the milk

counter. The customer purchasing milk can locate bread easily and continue with

their purchase.

 But it is not as easy as it sounds. Let us solve this case step by step:

1 Business problem definition—The very first step is defining the business problem,

which is clear to us. We wish to discover the relationships between various items

so that the arrangement in the store can be made better. Here, planograms come

into the picture. Planograms help the retailer plan the utilization of the space

in the store in a wise manner so that the customer can also navigate and access

the products easily. It can be considered a visual layout of the store. An example

is shown in figure 4.24.

Figure 4.24 An example of

a planogram. Planograms

are very useful for visual

merchandising.

144 CHAPTER 4 Association rules

In the figure, we can see that there are specific areas for each item category.

Association rules are quite insightful to help generate directions for

planograms.

2 Data discovery—The next step is data discovery, wherein the historical transac-

tions are scouted and loaded into a database. Typically, a transaction can look

like table 4.20. Note it is quite a challenge to convert this data format into one

that can be consumed by the association rule algorithms.

3 Data preparation—This step perhaps is the most difficult step. As we have seen,

association rules model creation is a very simple task. We have libraries that can

do the heavy lifting for us. But the dataset expected by them is in a particular

format. This is a tedious task; it is quite time-consuming and requires a lot of

data preprocessing skills.

There are a few considerations you should keep in mind while preparing the

dataset:

– Sometimes we get NULL or blank values during the data preparation phase.

Missing values in the datasets can lead to problems while computing. In

other machine learning solutions, we would advise to treat the missing val-

ues. In the case of association rules, we suggest ignoring the respective trans-

actions and not considering them in the final dataset.

– Many times, we get junk values in the data. Special characters like

!@%^&*()_ are found in the datasets. This can be attributed to incorrect

entries in the system. Hence, data cleaning is required. We cover the data

preprocessing step in detail in chapter 11, wherein we deal with NULL values

and junk values.

– Converting a table into a format that can be understood and consumed by

the association rule learning algorithms is an imperative but arduous step.

Go through the concept of SQL pivoting to understand the concept better.

4 Model preparation—Perhaps the easiest of the steps is modeling. We have already

solved Python solutions for different algorithms, so you should be quite com-

fortable with it.

Table 4.20 Example of invoices generated in a real-world retail store

Invoice number Date Items Amount

1001 01-Jun-21 Milk, Eggs, Cheese, Bread $10

1002 01-Jun-21 Bread, Bananas, Apples, Butter $15

1003 01-Jun-21 Butter, Carrots, Cheese, Eggs,

Bread, Milk, Bananas

$19

1004 01-Jun-21 Milk $1

1005 01-Jun-21 Bread $0.80

1454.9 Concluding thoughts

5 Model interpretation—Creating the model might be easy, but interpretation of

the rules is not. Sometimes, you have rules like #NA -> (Milk, Cheese). Such a

rule is obviously not usable and does not make any sense. It indicates that the

data preparation was not correct and some junk values are still present in the

dataset. Another example is (Some items) -> (Packaging material); this is per-

haps the most obvious rule but, again, not usable. This rule indicates that when-

ever shopping is done, packaging material is also purchased. That’s obvious,

right? A final example is (Potatoes, Tomatoes) -> (Onions). This kind of rule

might look correct, but it is a common-sense fact that the retailer would already

know. Obviously, most of the customers who are buying vegetables will buy pota-

toes, tomatoes, and onions together. Such rules might not add much value to

the business.

The threshold for support, confidence, lift, and conviction allows us to filter

out the most important rules. We can sort the rules in the descending order of

the lift and then remove the most obvious ones.

It is of vital importance that business stakeholders and subject matter experts

are involved at every step. In this case study, the operations team, visual mer-

chandising team, product teams, and marketing teams are the key players,

which should be closely aligned at each step.

6 Improving the planogram—Once the rules are generated and accepted, then we

can use them to improve the planogram for the retail space. The retailer can use

them to improve the marketing strategy and improve product promotions. For

example, if a rule like (A, B) -> (C) is accepted, the retailer might wish to create

a bundle of the products and sell them as a single entity. It will increase the aver-

age number of items purchased in the same transaction for the business.

This case study can be extended to any other domain or business function. For exam-

ple, the same steps can be used if we wish to examine user’s movement across web

pages. Web developers can analyze the historical clicks and usages of the customers on

their websites. By identifying the patterns, they can find out what users tend to click

and which features will maximize their engagement. Medical practitioners can use

association rules to better diagnose patients. The doctors can compare the probability

of the symptoms in relationship with other symptoms and provide a more accurate

diagnosis.

4.9 Concluding thoughts

There are some assumptions and limitations in the association rules and sequence

rules we have studied:

 The respective significance of an item is ignored while we generate the rules.

For example, if a customer purchased five cans of milk and 1 kg of apples in a

transaction, it is treated similarly to an invoice in which one can of milk and 5

kg of apples are purchased. Hence, we should bear in mind that the respective

weight of an item is not being considered.

146 CHAPTER 4 Association rules

 The cost of an item indicates the perceived value of a product. Some products

that are costly are more important, and hence, if they are purchased by the cus-

tomer, more revenue can be generated. While analyzing the invoices, we ignore

the cost associated with an item.

 While analyzing the sequence, we have not considered the respective time peri-

ods between the two transactions. For example, if between T1 and T2 there

were 10 days while between T2 and T3 there were 40 days, both are considered

as the same.

 In all the analyses, we have considered different categories as the same. Perish-

able items and nonperishable items are treated in a similar fashion. For exam-

ple, fresh milk with a shelf life of two to three days is treated similarly to washing

powder, which has a much longer shelf life.

 Many times, we receive noninteresting rules after analysis. These results are

from common sense (Potatoes, Tomatoes) -> (Onion). Such rules are not of

much use. We face such a problem a lot of the time.

 While noninteresting rules are a challenge, a huge number of discovered rules

are again one of the problems. We get hundreds of rules, and it becomes diffi-

cult to understand and analyze each one of them. Here the thresholding

becomes handy.

 The time and memory requirements for computations are huge. The algo-

rithms require scanning the datasets many times, and hence it is quite a time-

consuming exercise.

 The rules generated are dependent on the dataset that has been used for analy-

sis. For example, if we analyze the dataset generated during summers only, we

cannot use the rules for winters as consumers’ preferences change between dif-

ferent weather conditions. Moreover, we should refresh the algorithms over

time since with the passage of time, the macro- and micro-economic factors

change and hence the algorithms should be refreshed too.

There are some other algorithms that are also of interest. For association rules, we can

have multirelation association rules, k-optimal pattern discovery, approximate fre-

quent datasets, generalized association rules, high-order pattern discovery, etc. For

sequence mining, we have Generalized Sequence Pattern, FreeSpan, PrefixSpan, min-

ing associated patterns, etc. These algorithms are quite interesting and can be studied

for knowledge enhancement.

 Association rules and sequence mining are quite interesting topics. Various busi-

ness domains and functions are increasingly using association rules to understand the

pattern of events. These insights allow the teams to make sound and scientific deci-

sions to improve the customer experience and overall engagement. In this chapter, we

have explored association rules and sequence mining. These were studied using Apri-

ori, F-P, and ECLAT algorithms, and for sequence mining we used SPADE.

147Summary

4.10 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Go through these research papers for the association rules algorithm:

– Fast Discovery of Association Rules: https://mng.bz/eyqv

– Fast Algorithms for Mining Association Rules: https://mng.bz/64GZ

– Efficient Analysis of Pattern and Association Rule Mining Approaches:

https://arxiv.org/pdf/1402.2892.pdf

– A Review of Association Rule Mining Techniques with Respect to their Pri-

vacy-Preserving Capabilities: https://mng.bz/0Q0N

 For sequence mining, go through these research papers:

– SPADE: An Efficient Algorithm for Mining Frequent Sequences: https://

mng.bz/9YG7

– Sequential Mining: Patterns and Algorithm Analysis: https://arxiv.org/pdf/

1311.0350.pdf

– Sequential Pattern Mining Algorithm Based on Interestingness: https://

ieeexplore.ieee.org/document/8567170

– A New Approach for Problem of Sequential Pattern Mining: https://

mng.bz/jpxr

Summary

 Association rule learning identifies relationships between variables in datasets,

like the beer and diaper example.

 Through data analysis, such associations can inform marketing strategies, prod-

uct placement, and pricing in supermarkets.

 Market basket analysis in retail uses association rules to find buying patterns

and is applicable in other industries like bioinformatics.

 Association rules consist of antecedents leading to consequents, denoted as P ->

Q, with no common elements between them.

 Rule significance depends on support (frequency), confidence (accuracy), lift

(dependence measurement), and conviction.

 High support, confidence, lift, and conviction indicate stronger, more useful

rules.

 The Apriori algorithm generates item sets for association rules using a “bottom-

up” approach but faces challenges with large datasets.

 The ECLAT algorithm uses a depth-first search for faster, memory-efficient

computation of frequent item sets.

 The F-P growth algorithm improves on Apriori by using a frequent pattern tree

to eliminate candidate generation.

https://arxiv.org/pdf/1311.0350.pdf
https://arxiv.org/pdf/1311.0350.pdf
https://mng.bz/64GZ
https://mng.bz/jpxr
https://mng.bz/jpxr
https://ieeexplore.ieee.org/document/8567170
https://mng.bz/9YG7
https://mng.bz/9YG7
https://mng.bz/0Q0N
https://arxiv.org/pdf/1402.2892.pdf
https://mng.bz/eyqv

148 CHAPTER 4 Association rules

 Sequence rule mining helps explain user behavior over time, distinct from

time-series analysis.

 The SPADE algorithm analyzes sequences of events and dependencies over

time for sequence rule mining.

 Python implementations of the Apriori, ECLAT, F-P growth, and SPADE algo-

rithms are achievable with appropriate libraries.

 Evaluation metrics and threshold settings for support, confidence, and lift are

crucial for efficient rule generation.

 Sequence rule mining has applications in marketing, bioinformatics, and user

interaction analysis, allowing for actionable insights.

149

Clustering

Out of complexity, find simplicity.

 —Einstein

Sometimes life is very simple, and sometimes we experience quite complex situa-

tions. We sail through both situations and change our approach as needed.

 In part 1, we covered the fundamentals to prepare you for the journey ahead.

We are now in part 2, which is slightly more complex than part 1. Part 3 will be

more advanced than the first two parts. So please give careful attention to the com-

ing chapters, as the skills and knowledge gained here will prepare you for the later

chapters in the book.

 Before starting this chapter, we should refresh our memory on what we covered

in chapter 2. We studied clustering algorithms in part 1 of the book. In chapter 2,

we learned that clustering is an unsupervised learning technique where we wish to

This chapter covers

 Spectral clustering

 Fuzzy clustering

 Gaussian mixture models clustering

150 CHAPTER 5 Clustering

group the data points by discovering interesting patterns in the datasets. We went

through the meaning of clustering solutions and different categories of clustering

algorithms and looked at a case study. In that chapter, we explored k-means cluster-

ing, hierarchical clustering, and DBSCAN clustering in depth. We went through the

mathematical background, process, and Python implementation and the pros and

cons of each algorithm.

 You may often encounter datasets that do not conform to a simple shape and form.

Moreover, we have to find the best fit before making a choice of the final algorithm we

wish to implement. Here we might need help with more complex clustering algo-

rithms—the topic of this chapter. In this chapter, we are going to again study three

such complex clustering algorithms: spectral clustering, fuzzy clustering, and Gauss-

ian mixture models (GMM) clustering. As always, Python implementation will follow

the mathematical and theoretical concepts. This chapter is slightly heavy on mathe-

matical concepts. There is no need to be an advanced student of mathematics, but it is

sometimes important to understand how the algorithms work in the background. At

the same time, you will be surprised to find that Python implementation of such algo-

rithms is not tedious. This chapter does not have a case study.

 Welcome to the fifth chapter, and all the very best!

5.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have

used so far. The codes and datasets used in this chapter have been checked in at

GitHub (https://mng.bz/6epo).

 We are going to use the regular Python libraries we have used so far: numpy,

pandas, sklearn, seaborn, matplotlib, etc. You need to install two other Python

libraries in this chapter: skfuzzy and network. Using libraries, we can implement the

algorithms very quickly. Otherwise, coding these algorithms is quite a time-consuming

and painstaking task.

 Let’s get started with a refresh of clustering!

5.2 Clustering: A brief recap

Recall from chapter 2, clustering is used to group similar objects or data points. It is

an unsupervised learning technique where we intend to find natural grouping in the

data, as shown in figure 5.1.

 Here, we can observe that on the left side, we have ungrouped data, and on the

right side, the data points have been grouped into logical groups. We can also observe

that there can be two methodologies to do the grouping or clustering, and both result

in different clusters. Clustering as a technique is quite heavily used in business solu-

tions like customer segmentation, market segmentation, etc.

 We learned about k-means and hierarchical and DBSCAN clustering in chapter 2.

We also covered various distance measurement techniques and indicators to measure

the performance of clustering algorithms. You are advised to revisit the concepts.

 In this chapter, we focus on advanced clustering methods. We start with spectral

clustering in the next section.

https://mng.bz/6epo

1515.3 Spectral clustering

Figure 5.1 Clustering of objected results into natural grouping

5.3 Spectral clustering

Spectral clustering is one of the unique clustering algorithms, and a lot of research

has been done in this field. Revered researchers include Prof. Andrew Yang,

Prof. Michael Jordan, Prof. Yair Weiss, Prof. Jianbo Shi, and Prof. Jitendra Malik, to

name a few. We provide links to some of their papers at the end of the chapter.

 Spectral clustering works on the affinity and not the absolute location of the data

points for clustering. When we consider the absolute location of the points, the simi-

larity is simply based on the distances between the points, whereas affinity considers

the similarity between the points. If the affinity is 0 between the points, they are dis-

similar, whereas if the affinity is 1, they are very similar. Hence, wherever the data is in

complicated shapes (i.e., some kind of special relationship exists between the data

points), spectral clustering is the answer. We show a few examples in figure 5.2 where

spectral clustering can provide a logical solution.

Figure 5.2 Examples of various complex data shapes that can be clustered using spectral clustering

152 CHAPTER 5 Clustering

For figure 5.2, we could have used other algorithms like k-means clustering too. But

they might not be able to do justice to such complicated shapes of data. You can see

from figure 5.2 that the various data points are in a certain pattern. Algorithms like k-

means clustering utilize the compactness of the data points and are driven by cen-

troids of the respective clusters. In other words, the closeness of the points to each

other and compactness toward the cluster center drive the clustering in k-means. On

the other hand, in spectral clustering, connectivity is the driving logic. In connectivity,

either the data points are immediately close to one another or they are connected in

some way. Some examples of such connectivity-based clustering are depicted in figure

5.2. The points in the inner circle belong to one cluster while those in the outer circle

belong to another cluster.

 Now look at the first diagram in figure 5.3, where the data points are in a dough-

nut pattern. There can be data points that follow this doughnut pattern. We need to

cluster this data, and it is indeed a complex pattern. Imagine that by using a clustering

method, the circles inside a square are made a part of the same cluster, which is shown

in the middle diagram in figure 5.3. After all, they are close to each other. But if we

look closely, the points are in a circle and in a pattern, and hence, the actual cluster

should be as shown in the far right diagram in figure 5.3.

Figure 5.3 We can have a complex representation of data points that need to be clustered. Observe the doughnut

shape (left). An explanation can be that the dots in a square are a part of the same cluster as what would be based

on the distance only, but clearly, they are not part of the same cluster (middle). We have two circles here. The

points in the inner circle belong to one cluster, whereas the outer points belong to another cluster (right).

The example shown in figure 5.3 depicts the advantages of spectral clustering as

opposed to k-means clustering. In the second figure, the dots in red (those in the

square in the print book) will be incorrectly clustered into a different cluster, and in

the third figure, the correct clustering is shown. Spectral clustering may group the

data from the inner circle in a separate cluster.

 As we said earlier, spectral clustering utilizes the connectivity approach. In spectral

clustering, data points that are immediately next to each other are identified in a

graph. These data points are sometimes referred to as nodes. These data points or

1535.3 Spectral clustering

nodes are then mapped to a low-dimensional space. A low-dimensional space is one

that has a fewer number of input features. During this process, spectral clustering uses

eigenvalues, affinity matrix, Laplacian matrix, and degree matrix derived from the

dataset. The low-dimensional space can then be segregated into clusters.

NOTE Spectral clustering utilizes the connectivity approach for clustering. It
relies on graph theory, wherein we identify clusters of nodes based on the
edges connecting them.

We will study the process in detail. But first, there are a few important mathematical

concepts that form the foundation of spectral clustering, which we will cover now.

5.3.1 Building blocks of spectral clustering

We know that the goal of clustering is to group data points that are similar into one

cluster and the data points that are not similar into another. One important mathe-

matical concept is similarity graphs, which are a representation of data points.

SIMILARITY GRAPHS

A graph is one of the intuitive methods to represent data points. The first diagram in

figure 5.4 shows an example of a graph that is simply a connection between data

points represented by the edge. Two data points are connected if the similarity

between them is positive or it is above a certain threshold, which is shown in the sec-

ond diagram. Instead of absolute values for the similarity, we can use weights. So in

the second diagram in figure 5.4, as point 1 and 2 are similar compared to points 1

and 3, the connection between points 1 and 2 has a higher weight than points 1 and 3.

So, we can say that, using similarity graphs, we wish to cluster the data points such that

the edges of the data points have

 Higher weight values and hence are similar to each other and so are in the

same cluster

 Lower values of weight and hence are not similar to each other and so are in

different clusters

Apart from similarity graphs, we should also know the concept of eigenvalues and

eigenvectors, which we covered in detail in the previous chapter. You are advised to

refresh your memory on it should you need to.

1

3

Points

Edges

2 Figure 5.4 A graph is a simple

representation of data points. The

points or nodes are connected by edges

if they are very similar (left). The weight

is higher if the similarity between data

points is high; for dissimilar data

points, the weight is less (right).

154 CHAPTER 5 Clustering

ADJACENCY MATRIX

Have a close look at figure 5.5. We can see those various points from 1 to 5 are con-

nected. We represent the connection in a matrix. That matrix is called an adjacency

matrix. In an adjacency matrix, the rows and columns are the respective nodes. The

values inside the matrix represent the connection: if the value is 0, that means there is

no connection, and if the value is 1, it means there is a connection.

So, for an adjacency matrix, we are only concerned if there is a connection between

two data points. With the way that we are defining the edges (as nonoriented), the

matrix is always symmetric. This is because if there is a connection from 1 to 2, there

must also be a connection from 2 to 1, and if there is no connection between 3 and 1,

there is no connection between 1 and 3 either. If we extend the concept of the adja-

cency matrix, we get a degree matrix, which is our next topic.

DEGREE MATRIX

A degree matrix is a diagonal matrix, where the degree of a node along the diagonal

is the number of edges connected to it. If we use the same example as previously, we

get the degree matrix shown in figure 5.6. Nodes 3 and 5 have three connections

each, so they have values of 3 along the diagonal; the other nodes have only two con-

nections each, so they have 2 as the value along the diagonal.

1

2 3

4

5

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 0 0

3 0 1 0 1 1

4 0 0 1 0 1

5 1 0 1 1 0

Figure 5.5 An adjacency

matrix represents the

connection between

various nodes. There is a

connection between node

1 and node 5; hence the

value is 1. There is no

connection between node

1 and node 4; hence the

corresponding value is 0.

1

2
3

4

5

1 2 3 4 5

1 2 0 0 0 0

2 0 2 0 0 0

3 0 0 3 0 0

4 0 0 0 2 0

5 0 0 0 0 3

Figure 5.6 While an adjacency

matrix represents the connection

between various nodes, a degree

matrix is for the number of

connections each node has. It is

shown on the diagonal of the matrix.

For example, node 5 has three

connections and hence has a value of

3 in the adjacency matrix, while node

1 has only two connections and so

has a value of 2.

1555.3 Spectral clustering

You might be wondering: Why do we use these matrices? Matrices provide an elegant

representation of the data and can clearly depict the relationships between two

points. Also, computers can more easily deal with matrix representation than alterna-

tive ways for manipulating the graph.

 Now that we have covered both the adjacency matrix and degree matrix, we can

move to the Laplacian matrix.

LAPLACIAN MATRIX

There are quite a few variants of the Laplacian matrix, but if we take the simplest

form, it is nothing but a subtraction of the adjacency matrix from the degree matrix—

in other words, L = D – A. We can demonstrate it as shown in figure 5.7.

Figure 5.7 The Laplacian matrix is quite simple to understand. To get a Laplacian matrix, we can simply

subtract an adjacency matrix from the degree matrix as shown in the example here. Here, D represents

the degree matrix, A is the adjacency matrix, and L is the Laplacian matrix.

The Laplacian matrix is an important concept, and we use the eigenvalues of L to

develop spectral clustering. Once we get the eigenvalues and eigenvectors, we can

define two other values: spectral gap and Fielder value. The very first nonzero eigen-

value is the spectral gap, which defines the density of the graph. The Fielder value is the

second eigenvalue; it provides an approximation of the minimum cut required to sep-

arate the graph into two components. The corresponding vector for the Fielder value

is called the Fielder vector.

NOTE The Fielder vector has both negative and positive components, and
their resultant sum is zero.

We will use this concept once we study the process of spectral clustering in detail in

the next section. We cover one more concept—the affinity matrix—before moving on

to the process of spectral clustering.

AFFINITY MATRIX

In the adjacency matrix, if we replace the number of connections with the similarity of

the weights, we will get the affinity matrix. If the points are completely dissimilar, the

1 2 3 4 5

1 2 0 0 0 0

2 0 2 0 0 0

3 0 0 3 0 0

4 0 0 0 2 0

5 0 0 0 0 3

1 2 3 4 5

1 0 1 0 0 1

2 1 0 1 0 0

3 0 1 0 1 1

4 0 0 1 0 1

5 1 0 1 1 0

1 2 3 4 5

1 2 −1 0 0 −1

2 −1 2 −1 0 0

3 0 −1 3 −1 −1

4 0 0 −1 2 −1

5 −1 0 −1 −1 3

− =

D A L

156 CHAPTER 5 Clustering

affinity will be 0; if they are completely similar, the affinity will be 1. The values in the

matrix represent different levels of similarity between data points.

5.3.2 The process of spectral clustering

Now we have covered all the building blocks for spectral clustering. At a high level,

the various steps can be noted as follows:

1 We get the dataset and calculate its degree matrix and adjacency matrix.

2 Using them, we calculate the Laplacian matrix.

3 Then we calculate the first k eigenvectors of the Laplacian matrix. The k eigen-

vectors are the ones that correspond to the k smallest eigenvalues.

4 The resultant matrix formed is used to cluster the data points in k-dimensional

space.

NOTE For more clarity on eigenvalues, the affinity matrix, and the Laplacian
matrix, refer to the appendix.

We cover the process of spectral clustering using an example, as shown in figure 5.8.

These steps are generally not done in real-world implementation, as we have packages

and libraries to achieve them, but they are covered here to give you an idea of how the

algorithm can be developed from scratch and how it works so that you have a better

understanding on how to effectively utilize it. For the Python solution, we will use the

libraries and packages only. Though it is possible to develop an implementation from

scratch, it is not time-efficient to reinvent the wheel.

Exercise 5.1

Answer these questions to check your understanding:

1 The degree matrix is created by counting the number of connections. True or
False?

2 Laplacian is a transpose of the division of degree and adjacency matrix. True or
False?

3 Draw a graph on paper and then derive its adjacency and degree matrix.

D B

C AF

EH

G

I

Figure 5.8 Consider the example shown

where we have some data points and they

are connected. We will perform spectral

clustering on this data.

1575.3 Spectral clustering

When we wish to perform the spectral clustering on this data, we follow these steps:

1 Create the adjacency matrix and degree matrix. We will leave this step up to

you.

2 Create the Laplacian matrix (see figure 5.9).

3 Create the Fielder vector, as shown in figure 5.10, for the preceding Laplacian

matrix. We create the Fielder vector as described in the Laplacian Matrix sec-

tion. Observe how the sum of the matrix is zero.

4 We can see that there are a few positive values and a few negative values. Based

on the positive or negative values, we can create two distinct clusters. Figure

5.11 illustrates the process of spectral clustering.

A B C D E F G H I

A 3 −1 −1 −1 0 0 0 0 0

B −1 2 −1 0 0 0 0 0 0

C −1 −1 3 −1 0 0 0 0 0

D −1 0 −1 4 −1 −1 0 0 0

E 0 0 0 −1 4 −1 −1 −1 0

F 0 0 0 −1 −1 4 −1 −1 0

G 0 0 0 0 −1 −1 4 −1 −1

H 0 0 0 0 −1 −1 −1 3 0

I 0 0 0 0 0 0 −1 0 −1

Figure 5.9 The

Laplacian matrix of

the data. You are

advised to create

the degree and

adjacency matrix and

check the output.

0.33 −0.38

0.33 −0.48

0.33 −0.38

0.33 −0.12

0.33 0.16

0.33 0.30

0.33 0.24

0.33 0.51

0.33 0.16
Figure 5.10 The Fielder vector is

the output for the Laplacian matrix.

158 CHAPTER 5 Clustering

Spectral clustering is useful for image segmentation, speech analysis, text analytics,

entity resolution, etc. The method does not make any assumptions about the shape of

the data. Methods like k-means assume that the points are in a spherical form around

the center of the cluster, whereas there is no such strong assumption in spectral

clustering.

 Another significant difference is that in spectral clustering the data points need

not have convex boundaries as compared to other methods where compactness drives

clustering. Spectral clustering is sometimes slow since various matrices and their

eigenvalues, Laplacians, etc., have to be calculated. With a large dataset, the complex-

ity increases, and hence, spectral clustering can become slow, but it is a fast method

when we have a sparse dataset.

 Spectral clustering requires building a matrix that nominally has the size of the

number of items in a dataset squared because there is one column and one row for

each element. For example, a modest dataset of a few million elements will require a

matrix of several trillion elements! Storing that matrix verbatim requires terabytes of

RAM and is something that is at the edge of what a very powerful and expensive server

could do. There are techniques to mitigate the memory needs (such as not storing

every single element separately), but they make working with the matrix more compli-

cated. Moreover, finding the eigenvalues and even one eigenvector of such a large

matrix is very time-intense. As such, spectral clustering is a viable approach generally

for small datasets.

 We will now proceed to the Python solution of the spectral clustering algorithm.

5.4 Python implementation of spectral clustering

We have covered the details of spectral clustering—it is time to get into the code. For

this, we will create an artificial dataset and run a k-means algorithm and then spectral

clustering to compare the results. The steps are as follows:

1 Import all the necessary libraries. These libraries are standard, except for a few

that we will cover. sklearn is one of the most famous and sought-after libraries,

and from sklearn we import SpectralClustering, make_blobs, and

make_circles:

from sklearn.cluster import SpectralClustering
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

D B

C AF

EH

G

I

Figure 5.11 The two clusters are

identified. This is a very simple

example to illustrate the process of

spectral clustering.

1595.4 Python implementation of spectral clustering

from sklearn.datasets import make_circles
from numpy import random
import numpy as np
from sklearn.cluster import SpectralClustering, KMeans
from sklearn.metrics import pairwise_distances
from matplotlib import pyplot as plt
import networkx as nx
import seaborn as sns

2 Curate a dataset. We will use the make_circles method. Here, we take 2,000 sam-

ples and represent them in a circle. The output is as follows (see figure 5.12):

data, clusters = make_circles(n_samples=2000, noise=.01, factor=.3,
random_state=5)

plt.scatter(data[:,0], data[:,1])

3 Test this dataset with k-means clustering. The two colors show two different clus-

ters, which overlap each other. The print version of the book will not show the

colors, but the output of the Python code will. The same output is available in

the GitHub repository (see figure 5.13):

kmeans = KMeans(init='k-means++', n_clusters=2)
km_clustering = kmeans.fit(data)
plt.scatter(data[:,0], data[:,1], c=km_clustering.labels_, cmap='prism',
alpha=0.5, edgecolors='g')

Figure 5.12 Curating a dataset using

the make_circles method

Figure 5.13 Testing the dataset with

k-means clustering

160 CHAPTER 5 Clustering

4 Run the same data with spectral clustering. We find that the two clusters are

being handled separately here (see figure 5.14):

spectral = SpectralClustering(n_clusters=2,
affinity='nearest_neighbors', random_state=5)

sc_clustering = spectral.fit(data)
plt.scatter(data[:,0], data[:,1], c=sc_clustering.labels_,

cmap='prism', alpha=0.5, edgecolors='g')

We can observe here that the same dataset is handled differently by the two

algorithms. Spectral clustering handles the dataset arguably better, as the circles

that are separate are depicted separately.

5 Simulate various cases by changing the values in the dataset and running the

algorithms. Observe the different outputs for comparison.

5.5 Fuzzy clustering

So far we have covered quite a few clustering algorithms. Did you wonder why a data

point should belong to only one cluster? Why can’t a data point belong to more than

one cluster? Have a look at figure 5.15: the red points in the right image (shown with

an x in the print version) can belong to more than one cluster.

Figure 5.14 The two clusters are

being handled separately when

using spectral clustering.

x
x

x

x

Figure 5.15 The figure

on the left represents all

the data points. The red

points (those with an x in

the print version) can

belong to more than one

cluster. In fact, we can

allocate more than one

cluster to each point. A

probability score can be

given for a point to belong

to a particular cluster.

1615.5 Fuzzy clustering

We know that clustering is used to group items in cohesive groups based on their sim-

ilarities. The items that are similar are in one cluster, whereas the items that are dis-

similar are in different clusters. The idea of clustering is to ensure the items in the

same cluster are similar. When the items can be only in one cluster, it is called hard

clustering. K-means clustering is a classic example of hard clustering. But if we reflect

on figure 5.15, we can observe that an item can belong to more than one cluster. This

is called soft clustering.

NOTE It is computationally cheaper to create fuzzy boundaries than to create
hard clusters.

In fuzzy clustering, an item can be assigned to more than one cluster. The items that

are closer to the center of a cluster will have a stronger belongingness to that cluster

as compared to the points that are at the edge of the cluster. This is referred to as mem-

bership. It employs the least-square algorithm to find the most optimal location of an

item. The optimal location that we derive from the least-square algorithm will be the

probability space between two or more clusters. We will examine this concept in detail

later.

5.5.1 Types of fuzzy clustering

Fuzzy clustering can be further divided into classical fuzzy algorithms and shape-based

fuzzy algorithms. See figure 5.16.

We will cover the fuzzy c-means (FCM) algorithm in detail next, but first we will review

the rest of the algorithms briefly:

 The Gustafson-Kessel algorithm, sometimes called the GK algorithm, works by

associating an item with a cluster and a matrix. GK results in elliptical clusters,

and to modify as per varied structures in the datasets, GK uses the covariance

matrix. It allows the algorithm to capture the elliptical properties of the cluster.

Fuzzy clustering

Fuzzy c-means

Gustafson-Kessel
algorithm

Gath-Geva
algorithm

Circular shaped

Elliptical shaped

Generic shaped

Classical fuzzy clustering Shape-based fuzzy clustering

Figure 5.16 Fuzzy algorithms can be

divided into the classical fuzzy

algorithm and the shape-based fuzzy

algorithm.

162 CHAPTER 5 Clustering

GK can result in narrower clusters, and wherever the number of items is higher,

those areas can be thinner.

 The Gath-Geva algorithm is not based on an objective function. The clusters

can result in any shape, because it is a fuzzification of statistical estimators.

 The shape-based clustering algorithms are self-explanatory as per their names.

A circular fuzzy clustering algorithm will result in circular-shaped clusters and

so on.

The FCM algorithm is the most popular fuzzy clustering algorithm. It was initially

developed in 1973 by J.C. Dunn, and it has been improved multiple times. It is quite

similar to k-means clustering.

 Refer to figure 5.17. In the first part of the figure (left), we have some items or data

points. These data points can be a part of a clustering dataset like customer transac-

tions, etc. In the second part of the figure (middle), we create a cluster for these data

points. While this cluster is created, membership grades are allocated to each of the

data points. These membership grades suggest the degree or the level to which a data

point belongs to a cluster. We will shortly examine the mathematical function to calcu-

late these values.

TIP Do not get confused by the degree and the probabilities. If we sum these
degrees, we may not get 1, as these values are normalized between 0 and 1 for
all the items.

In the third part of the figure (right), we can see that point 1 is closer to the cluster

center and thus belongs to the cluster to a higher degree than point 2, which is closer

to the boundary or the edge of the cluster.

Figure 5.17 Data points that can be clustered (left). The data points can be grouped

into two clusters. For the first cluster, the cluster centroid is represented using a + sign

(middle). Point 1 is much closer to the cluster center as compared to point 2. So we can

conclude that point 1 belongs to this cluster to a higher degree than cluster 2.

We will now venture into the technical details of the algorithm. This can get a little

mathematically heavy.

+ +

2

1

1635.5 Fuzzy clustering

 Consider we have a set of n items (equation 5.1):

 x = {x1, x2, x3, x4, x5, . . . , xn } (5.1)

We apply the FCM algorithm to these items. These n items are clustered into c fuzzy

clusters based on some criteria. Let’s say that we will get from the algorithm a list of c

cluster centers (equation 5.2):

 c = {c1, c2, c3, c4, c5, . . . , cc } (5.2)

The algorithm also returns a partition matrix, which can be defined as equation 5.3:

(5.3)

Here, each of the elements in wi,j is the degree to which each of the elements in X

belong to cluster cj. This is the purpose of the partition matrix.

 Mathematically, we can get wi,j as shown in equation 5.4. The proof of the equation

is beyond the scope of this book.

(5.4)

The algorithm generates centroids for the clusters too. The centroid of a cluster is the

mean of all the points in that cluster, and the mean is weighted by their respective

degrees of belonging to that cluster. If we represent it mathematically, we can write it

like in equation 5.5:

(5.5)

In equations 5.4 and 5.5, we have a very important term: m. m is the hyperparameter

used to control the fuzziness of the clusters. The values of m  1 and can be kept as 2

(a typically used value).

NOTE The higher the value of m, the fuzzier the clusters.

We now examine the step-by-step process in the FCM algorithm:

1 Start as we start in k-means clustering by choosing the number of clusters we

wish to have in the output.

2 Allocate the weights randomly to each of the data points.

3 The algorithm iterates until it has converged. Recall how the k-means algorithm

converges, wherein we initiate the process by randomly allocating the centroids

of clusters. And then iteratively we refine the centroids for each of the clusters

until we get convergence. This is how k-means works. For FCM, we will utilize a

similar process albeit with slight differences. We have added a membership

value wi,j and m.

164 CHAPTER 5 Clustering

4 For FCM, for the algorithm to converge we calculate the centroid for each of

the clusters as per equation 5.6:

(5.6)

5 For each of the data points, we also calculate its respective coefficient for being

in that particular cluster. We will use equation 5.4.

6 Now we should iterate until the FCM algorithm has converged. The cost func-

tion that we wish to minimize is given by equation 5.7:

(5.7)

Once this function has been minimized, we can conclude that the FCM algorithm has

converged. In other words, we can stop the process as the algorithm has finished

processing.

 This is a good time to compare this with the k-means algorithm. In k-means, we have

a strict objective function that will allow only one cluster membership, while for FCM

clustering, we can get different clustering membership based on the probability scores.

 FCM is very useful for business cases where the boundary between clusters is not

clear and stringent. Consider the field of bioinformatics, wherein a gene can belong

to more than one cluster of genes. Another example is when we have overlapping

datasets like in the fields of the marketing analytics or image segmentation where we

might have a lot of complex, overlapping, and confusing datasets. FCM can give com-

paratively more robust results than k-means.

 We will now proceed to the Python solution of FCM clustering using the libraries.

5.5.2 Python implementation of FCM

We have covered the process of FCM. We will now work on the Python implementa-

tion of FCM by following these steps:

1 Import the necessary libraries:

import skfuzzy as fuzz
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Exercise 5.2

Answer these questions to check your understanding:

1 Fuzzy clustering allows us to create overlapping clusters. True or False?

2 A data point can belong to one and only one cluster. True or False?

3 If the value of m is lower, we get clusters with more precise boundaries. True or
False?

1655.5 Fuzzy clustering

import seaborn as sns
%matplotlib inline

2 Declare a color palette, which will be used later for color coding the clusters:

color_pallete = ['r','m','y','c', 'brown', 'orange','m','k',
'gray','purple','seagreen']

3 Define the cluster centers:

cluster_centers = [[1, 1],
 [2, 4],
 [5, 8]]

4 Assign the weights:

sigmas = [[0.5, 0.6],
 [0.4, 0.5],
 [0.1, 0.6]]

5 Set the seed and then loop through the cluster centers:

np.random.seed(5)

xpts = np.zeros(1)
ypts = np.zeros(1)
labels = np.zeros(1)
for i, ((xmu, ymu), (xsigma, ysigma)) in enumerate(zip(cluster_centers,
sigmas)):
 xpts = np.hstack((xpts, np.random.standard_normal(500) * xsigma + xmu))
 ypts = np.hstack((ypts, np.random.standard_normal(500) * ysigma + ymu))
 labels = np.hstack((labels, np.ones(500) * i))

6 We will represent the data points first. See figure 5.18:

fig0, ax0 = plt.subplots()
for label in range(5):
 ax0.plot(xpts[labels == label], ypts[labels == label], '.')
ax0.set_title('Data set having 500 points.')
plt.show()

Dataset having 500 points.

Figure 5.18

Representation of

the data points

166 CHAPTER 5 Clustering

7 Iterate different outputs with different values of cluster values and FPC (see fig-

ure 5.19):

Figure 5.19 The output of the FCM algorithm

fig1, axes1 = plt.subplots(3, 3, figsize=(10, 10))
alldata = np.vstack((xpts, ypts))
fpcs = []

for ncenters, ax in enumerate(axes1.reshape(-1), 2):
 cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
 alldata, ncenters, 2, error=0.005, maxiter=1000, init=None)

 # Store fpc values for later
 fpcs.append(fpc)

 # Plot assigned clusters, for each data point in training set
 cluster_membership = np.argmax(u, axis=0)
 for j in range(ncenters):

1675.6 Gaussian mixture model

 ax.plot(xpts[cluster_membership == j],
 ypts[cluster_membership == j], '.', color=colors[j])

 # Mark the center of each fuzzy cluster
 for pt in cntr:
 ax.plot(pt[0], pt[1], 'rs')

 ax.set_title('cluster_centers = {0}; FPC =
{1:.2f}'.format(ncenters,

fpc), size=12)
 ax.axis('off')

fig1.tight_layout()

Observe the output of the code, where for the same datasets you can see the different

clusters with different positions of the centers. To appreciate the colors, you will have

to run the code.

5.6 Gaussian mixture model

Next, we continue our discussion of soft clustering. Recall we introduced the GMM at

the start of the chapter. Now we will study the concept and see the Python implemen-

tation of it.

 First, let’s get an understanding of the Gaussian distribution or what is sometimes

called normal distribution. You might recognize it as a bell curve; it usually refers to the

same thing.

 In figure 5.20, observe that the distribution where the µ (mean) is 0 and  2 (stan-

dard deviation) is 1. It is a perfect normal distribution curve. Compare the distribu-

tion in different curves here.

Figure 5.20 A Gaussian distribution is one of the most famous distributions. Observe how the

values of mean and standard deviation are changed and their effect on the corresponding curve.

168 CHAPTER 5 Clustering

The mathematical expression for Gaussian distribution is

(5.8)

The equation is also called the probability density function. In figure 5.20, observe the

shape of the probability distribution where the µ is 0 and  2 is 1. It is a perfect normal

distribution curve. Compare the distribution in different curves in figure 5.20 where,

by changing the values of the mean and standard distribution, we get different graphs.

 You might be wondering why we are using Gaussian distribution here. There is a

very famous statistical theorem called the central limit theorem. The theorem states that

if the variability of the data is due to a large number of unrelated causes, then the dis-

tribution can be approximated by a Gaussian curve. Also, the approximation becomes

more and more accurate the more data is collected; that is, the more data we collect,

the more Gaussian the distribution. This normal distribution can be observed across

all walks of life and in chemistry, physics, mathematics, biology, or any other branch of

science. That is the beauty of Gaussian distribution.

 The plot shown in figure 5.20 is 2D. We can have multidimensional Gaussian distri-

bution too. In the case of a multidimensional Gaussian distribution, we will get a 3D

figure as shown in figure 5.21. Our input was a scalar in 1D. Now, instead of scalar, our

input is a vector; the mean is also a vector and represents the center of the data.

Hence, the mean has the same dimensionality as the input data. The variance is now

the covariance matrix  . This matrix not only tells us the variance in the inputs but

also comments on the relationship between different variables—for example, how the

values of y are affected if the value of x is changed. Have a look at figure 5.21. We can

understand the relationship between the x and y variables here.

Figure 5.21 3D representation

of a Gaussian distribution

1695.6 Gaussian mixture model

NOTE Covariance plays a significant role here. K-means does not consider the
covariance of a dataset, which is used in the GMM model.

Let’s examine the process of GMM clustering. Imagine we have a dataset with n items.

When we use GMM clustering, we do not find the clusters using the centroid method;

instead, we fit a set of k Gaussian distributions to the dataset at hand. In other words,

we have k clusters. We should determine the parameters for each of these Gaussian

distributions, which are mean, variance, and weight of a cluster. Once the parameters

for each of the distributions are determined, then we can find the respective probabil-

ity for each of the n items to belong to k clusters.

 Mathematically, we can calculate the probability as shown in equation 5.9. The

equation is used so we know that a particular point x is a linear combination of k

Gaussians. The term j is used to represent the strength of the Gaussian, and it can be

seen in the second equation that the sum of such strength is equal to 1.

(5.9)

For spectral clustering, we must identify the values of  ,  , and µ. As you can imagine,

getting the values of these parameters can be tricky. It is indeed a slightly complex

process called the expectation-maximization (EM) technique, which we will cover

next. This section is quite heavy on mathematical concepts and is optional. It is rec-

ommended for readers interested in understanding the deeper workings of the

techniques.

5.6.1 EM technique

EM is a statistical method to determine the correct parameters for a model. There are

quite a few techniques that are popular; maximum likelihood estimation might be the

most famous. But at the same time, there could be a few challenges with maximum

likelihood. The dataset might have missing values or, in other words, be incomplete.

Or it is possible that a point in the dataset is generated by two different Gaussian dis-

tributions. Hence, it will be very difficult to determine which distribution generated

that data point. Here, EM can be helpful.

NOTE K-means uses only mean while GMM utilizes both mean and variance
of the data.

The variables that are generated in the process are called latent variables. Since we do

not know the exact values of these latent variables, EM first estimates their optimum

values using the current data. Once this is done, then the model parameters are esti-

mated. Using these model parameters, the latent variables are again determined. And,

170 CHAPTER 5 Clustering

using these new latent variables, new model parameters are derived. The process con-

tinues until a good enough set of latent values and model parameters are achieved

that fit the data well. Let’s study that in more detail now. We will use the same example

as in the last section.

 Imagine we have a dataset with n items. As mentioned, when we use GMM cluster-

ing, we do not find the clusters using the centroid method; instead, we fit a set of k

Gaussian distributions to the dataset at hand. In other words, we have k clusters. We

determine the parameters for each of these Gaussian distributions (mean, variance,

and weight). Let’s say that mean is µ1, µ2, µ3, µ4…. µk and covariance is 1, 2, 3,

4….  k. We can also have one more parameter to represent the density or strength of

the distribution, and it can be represented by  .

 We start with the expectation, or the E step. In this step, each data point is assigned

to a cluster probabilistically. So, for each point, we calculate its probability of belong-

ing to a cluster; if this value is high, the point is in the correct cluster; otherwise, the

point is in the wrong cluster. In other words, we calculate the probability that each

data point is generated by each of the k Gaussians.

NOTE Since we are calculating probabilities, these are called soft
assignments.

The probability is calculated using the formula in equation 5.10. If we look closely, the

numerator is the probability, and then we normalize by the denominator.

(5.10)

In the expectation step, for a data point xi,j, where i is the row and j is the column, we

are getting a matrix where rows are represented by the data points and columns are

their respective Gaussian values.

 When the expectation step is finished, we will perform the maximization or the M

step. In this step, we will update the values of µ,  , and  using the formula in equa-

tion 5.7. Recall, in k-means clustering, we simply take the mean of the data points and

move ahead. We do something similar here albeit use the probability or the expecta-

tion we calculated in the last step.

 The three values can be calculated using the equations below. Equation 5.7 is the

calculation of the covariances  j, of all the points, which is then weighted by the prob-

ability of that point being generated by Gaussian j as shown in equation 5.11. The

mathematical proofs are beyond the scope of this book.

(5.11)

1715.6 Gaussian mixture model

The mean µj, is determined by equation 5.12. Here, we determine the mean for all the

points, weighted by the probability of that point being generated by Gaussian j.

(5.12)

Similarly, the density or the strength is calculated by equation 5.13, where we add all

the probabilities for each point to be generated by Gaussian j and then divide by the

total number of points N.

(5.13)

Based on these values, new values for  , µ, and  are derived, and the process contin-

ues until the model converges. We stop when we can maximize the log-likelihood

function.

 It is a complex mathematical process. We have covered it to give you an in-depth

understanding of what happens in the background of the statistical algorithm. The

Python implementation is much more straightforward than the mathematical

concept.

5.6.2 Python implementation of GMM

We will first import the data, and then we will compare the results using k-means and

GMM. We follow these steps:

1 Import all the libraries and the dataset:

import pandas as pd
data = pd.read_csv('vehicle.csv')
import matplotlib.pyplot as plt

2 Drop any NA from the dataset:

data = data.dropna()

3 Fit a kmeans algorithm. We are keeping the number of clusters as 5. Please note

that we are not saying that this is an ideal number of clusters. The number of

Exercise 5.3

Answer these questions to check your understanding:

1 Gaussian distribution has a mean equal to 1 and a standard deviation equal to
0. True or False?

2 GMM models do not consider the covariance of the data. True or False?

172 CHAPTER 5 Clustering

clusters is only for illustrative purposes. We declare a variable k-means and then

use five clusters. The dataset is fit next:

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=5)
kmeans.fit(data)

4 Plot the clusters. First, a prediction is made on the dataset, and then the values

are added to the data frame as a new column. The data is then plotted with dif-

ferent colors representing different clusters. The print version of the book will

not show the different colors, but the output of the Python code will. The same

output is available in the GitHub repository.

The output is as follows (see figure 5.22):

pred = kmeans.predict(data)
frame = pd.DataFrame(data)
frame['cluster'] = pred

color=['red','blue','orange', 'brown', 'green']
for k in range(0,5):
 data = frame[frame["cluster"]==k]
 plt.scatter(data["compactness"],data["circularity"],c=color[k])
plt.show()

5 Fit a GMM model. Note that the code is the same as the k-means algorithm,

only the algorithm’s name has changed from k-means to GaussianMixture:

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=5)
gmm.fit(data)

#predictions from gmm
labels = gmm.predict(data)
frame = pd.DataFrame(data)
frame['cluster'] = labels

Figure 5.22 Outcome of plotting

the clusters after fitting the

kmeans algorithm

1735.6 Gaussian mixture model

6 Plot the results. The output is as follows (figure 5.23):

color=['red','blue','orange', 'brown', 'green']
for k in range(0,5):
 data = frame[frame["cluster"]==k]
 plt.scatter(data["compactness"],data["circularity"],c=color[k])
plt.show()

7 Run the code with different values of clusters to observe the difference. In the

following plots, the left one is k-means with two clusters, while the right is GMM

with two clusters. There are a few points that are classified differently in the two

clustering approaches. The print version of the book will not show the different

colors, but the output of the Python code will. The same output is available in

the GitHub repository, too (see figure 5.24).

Figure 5.24 K-means with two clusters (left) and GMM with two clusters (right)

Gaussian distribution is one of the most widely used data distributions used. If we

compare k-means and the GMM model, we see that k-means does not consider the

Figure 5.23 Outcome of

plotting the clusters after

fitting a GMM algorithm

174 CHAPTER 5 Clustering

normal distribution of the data. The relationship of various data points is also not con-

sidered in k-means.

NOTE K-means is a distance-based algorithm; GMM is a distribution-based
algorithm.

In short, it is advantageous to use GMM models for creating clusters, particularly

when we have overlapping datasets. It is a useful technique for financial and price

modeling, natural language processing-based solutions, etc.

5.7 Concluding thoughts

In this chapter, we have explored three complex clustering algorithms. You might

have felt the mathematical concepts were a bit heavy. They are indeed, but they pro-

vide a deeper understanding of the process. These algorithms are not necessarily the

best ones for every problem. Ideally, in a real-world business problem, we start with

classical clustering algorithms (k-means, hierarchical, and DBSCAN). If we do not get

acceptable results, we can try the more complex algorithms.

 Many times, a data science problem is equated to the choice of algorithm, which it

is not. The algorithm is certainly an important ingredient of the entire solution, but it

is not the only one. In real-world datasets, there are a lot of variables, and the amount

of data is also quite high. The data has a lot of noise. We should account for all of these

factors when we shortlist an algorithm. Algorithm maintenance and refreshing are also

considerations. All of these aspects are covered in detail in the last chapter of the book.

5.8 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 In chapter 2, we did clustering using various techniques. Use the datasets from

there and perform spectral clustering, GMM, and FCM clustering to compare

the results. Datasets provided at the end of chapter 2 can be used for clustering.

 Get the credit card dataset for clustering from Kaggle (https://mng.bz/oKwd)

and data from the famous Iris dataset, which we used earlier (https://www

.kaggle.com/uciml/iris).

 Refer to the book Computational Network Science by Henry Hexmoor to study the

mathematical concepts.

 Get spectral clustering papers from the following links and study them:

– On spectral clustering: analysis and an algorithm: https://mng.bz/nRwa

– Spectral clustering with eigenvalue selection: https://mng.bz/vKw7

– The mathematics behind spectral clustering and the equivalence to principal

component analysis: https://arxiv.org/pdf/2103.00733v1.pdf

 Get GMM papers from the following links and explore them:

– “GMM Estimation for High Dimensional Panel Data Models”: https://

mng.bz/4agw

https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/iris
https://arxiv.org/pdf/2103.00733v1.pdf
https://mng.bz/4agw
https://mng.bz/4agw
https://mng.bz/vKw7
https://mng.bz/nRwa
https://mng.bz/oKwd

175Summary

– “Application of Compound Gaussian Mixture Model in the Data Stream”:

https://ieeexplore.ieee.org/document/5620507

 Get FCM papers from the following links and study them:

– “FCM: The Fuzzy c-Means Clustering Algorithm”: https://mng.bz/QDXG

– A Survey on Fuzzy c-Means Clustering Techniques: https://www.ijedr.org/

papers/IJEDR1704186.pdf

– “Implementation of Fuzzy C-Means and Possibilistic C-Means Clustering

Algorithms, Cluster Tendency Analysis and Cluster Validation”: https://

arxiv.org/pdf/1809.08417.pdf

Summary

 Spectral clustering focuses on data point affinity rather than location for clus-

tering. It works well with complex data shapes where traditional algorithms like

k-means may not suffice.

 Spectral clustering utilizes graph theory and connectivity, relying on eigenval-

ues, the Laplacian matrix, and the affinity matrix.

 The process includes calculating degree, adjacency, Laplacian matrices, and the

Fielder vector for clustering.

 K-means clustering uses centroids, whereas spectral clustering’s focus is on con-

nectivity and data point similarities.

 Spectral clustering can require substantial computational resources due to

matrix operations and is suitable for smaller datasets.

 Fuzzy clustering allows data points to belong to multiple clusters, introducing

“membership” for data items.

 FCM is a key algorithm in fuzzy clustering, utilizing membership degrees and

controlling fuzziness through hyperparameter m .

 GMM employs Gaussian distributions for soft clustering, factoring in dataset

covariance.

 GMM is suitable for overlapping datasets and considers the relationship

between data points, unlike k-means.

 The EM technique is used in GMM to estimate parameters iteratively.

 GMM models are advantageous for financial modeling, natural language pro-

cessing, and cases with overlapping data.

 Fuzzy and GMM are soft clustering methods, allowing detailed membership

and probability assignment to data points.

 Spectral clustering supports applications in image segmentation, speech analy-

sis, and text analytics without assuming data shape constraints.

https://mng.bz/QDXG
https://ieeexplore.ieee.org/document/5620507
https://www.ijedr.org/papers/IJEDR1704186.pdf
https://www.ijedr.org/papers/IJEDR1704186.pdf
https://arxiv.org/pdf/1809.08417.pdf
https://arxiv.org/pdf/1809.08417.pdf

176

Dimensionality reduction

Life is really simple, but we insist on making it complicated.

—Confucius

Simplicity is a virtue—both in life and in data science. We have discussed a lot of

algorithms so far. A few of them are simple enough, and some of them are a bit

complicated. In part 1 of the book, we studied simpler clustering algorithms, and

in the last chapter, we examined advanced clustering algorithms. Similarly, we stud-

ied a few dimensionality algorithms like principal component analysis (PCA) in

chapter 3. Continuing on the same note, we will study three advanced dimensional-

ity reduction techniques in this chapter.

This chapter covers

 t-distributed stochastic neighbor embedding

 Multidimensional scaling

 Uniform manifold approximation and projection

 Python implementations of the algorithms

1776.2 Multidimensional scaling

 The advanced topics we cover in this and the next part of the book are meant to

prepare you for complex problems. While you can apply these advanced solutions, it

is always advisable to start with the classical solutions like PCA for dimensionality

reduction. And if that solution doesn’t appropriately address the problem, then you

can try the advanced solutions.

 Dimensionality reduction is one of the most sought-after solutions, particularly

when we have a large number of variables. Recall the “curse of dimensionality” we dis-

cussed in chapter 3. You are advised to refresh your memory on chapter 3 before mov-

ing forward if needed. We will cover t-distributed stochastic neighbor embedding (t-

SNE), multidimensional scaling (MDS), and uniform manifold approximation and

projection (UMAP) in this chapter. This chapter will cover some mathematical con-

cepts that create the foundation of the advanced techniques we are going to discuss.

As always, the concept discussion will be followed by a Python solution. This chapter

also has a short case study. We will also develop a solution using an images dataset.

 There may be a dilemma in your mind: What is the level of mathematics required,

and is an in-depth statistical knowledge a prerequisite? The answer is both yes and no.

While having a mathematical understanding will allow you to understand the algo-

rithms and appreciate the process in greater depth; at the same time, for real-world

business implementation, sometimes one might want to skip the mathematics and

directly move to the examples in Python. We suggest having at least more than a basic

understanding of the mathematics to fully grasp the concept. In this book, we provide

that level of mathematical support without going into too much depth, presenting

instead an optimal mix of practical world and mathematical concepts.

 Welcome to the sixth chapter, and all the very best!

6.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have

used so far. The codes and datasets used in this chapter have been checked in at

https://mng.bz/XxOv.

 You will need to install Keras as an additional Python library in this chapter. Along

with this, you will need the regular modules: numpy, pandas, matplotlib, seaborn, and

sklearn.

6.2 Multidimensional scaling

As you know, maps prove to be quite handy while traveling. Now imagine you are given

a task. You receive distances between some cities around the world—for example,

between London and New York, London and Paris, Paris and New Delhi, and so forth.

Then you are asked to re-create the map from which these distances have been derived.

If we have to re-create that 2D map, that will be through trial and error; we will make

some assumptions and move ahead with the process. It will surely be a tiring exercise

prone to error and quite time-consuming indeed. MDS can do this task easily for us.

https://mng.bz/XxOv

178 CHAPTER 6 Dimensionality reduction

NOTE While thinking of the preceding example, ignore the fact that the
earth is not flat, and assume that the distance measurement metric is con-
stant—for example, there is no confusion in miles or kilometers.

As an illustration, consider figure 6.1. Formally put, if we have x data points, MDS can

help us convert the information of the pairwise distance between these x points to a

configuration of points in a Cartesian space. Or, simply put, MDS transforms a large

dimensional dataset into a lower dimensional one and, in the process, keeps the dis-

tance or the similarity between the points the same.

Figure 6.1 Illustration of distance between the cities and if they are represented on a map. The figure

is only to help develop an understanding and does not represent the actual results.

A
tl
a
n
ta

B
o
s
to

n

C
h
ic

a
g
o

D
a
lla

s

D
e
n
v
e
r

H
o
u
s
to

n

L
a
s
 V

e
g
a
s

L
o
s
 A

n
g
e
le

s

M
ia

m
i

N
e
w

 O
rl
e
a
n
s

N
e
w

 Y
o
rk

P
h
o
e
n
ix

S
a
n
 F

ra
n
c
is

c
o

S
e
a
tt
le

W
a
s
h
in

g
to

n
,
D

C

Atlanta 1095 715 805 1437 844 1920 2230 675 499 884 1832 2537 2730 657

Boston 1095 983 1815 1991 1886 2500 3036 1539 1541 213 2664 3179 3043 44

Chicago 715 983 931 1050 1092 1500 2112 1390 947 840 1729 2212 2052 695

Dallas 805 1815 931 801 242 1150 1425 1332 504 1604 1027 1765 2122 1372

Denver 1437 1991 1050 801 1032 885 1174 2094 1305 1780 836 1266 1373 1635

Houston 844 1886 1092 242 1032 1525 1556 1237 365 1675 118 1958 2348 1443

Las Vegas 1920 2500 1500 1150 885 1525 289 2640 1805 2486 294 573 1188 2568

Los Angeles 2230 3036 2112 1425 1174 1556 289 2757 1921 2825 398 403 1150 2680

Miami 675 1539 1390 1332 2094 1237 2640 2757 892 1328 2359 3097 3389 1101

New Orleans 499 1541 947 504 1305 365 1805 1921 892 1330 1523 2269 2626 1098

New York 884 213 840 1604 1780 1675 2486 2825 1328 1330 2442 3036 2900 229

Phoenix 1832 2664 1729 1027 836 1158 294 398 2359 1523 2442 800 1482 2278

San Francisco 2537 3179 2212 1765 1266 1958 573 403 3097 2269 3036 800 817 2864

Seattle 2730 3043 2052 2122 1373 2348 1188 1150 3389 2626 2900 1482 817 2755

Washington, DC 657 440 695 1372 1635 1443 2568 2680 1101 1098 229 2278 2864 2755

1796.2 Multidimensional scaling

To simplify, consider figure 6.2. Here we have three points: A, B, and C. We are repre-

senting these points in a 3D space. Then we represent the three points in a 2D space,

and finally they are represented in a 1D space. The distance between the points is not

up to scale in the diagrams in the figure. The example represents the meaning of low-

ering the number of dimensions.

Figure 6.2 Representation of three points

Hence, in MDS, multidimensional data is reduced to a lower number of dimensions.

 There are three types of MDS algorithms:

 Classical MDS

 Metric multidimensional scaling

 Nonmetric multidimensional scaling

6.2.1 Classic MDS

We will examine the metric MDS process in detail in the book, while we will cover the

classical and nonmetric briefly. Imagine we have two points: i and j. Let us assume that

the original distance between two points is dij and the corresponding distance in the

lower dimensional space is ij.

 In classical MDS, the distances between the points are treated as Euclidean dis-

tances, and the original and fitted distances are represented in the same metric. It

means that if the original distances in a higher dimensional space are calculated using

the Euclidean method, the fitted distances in the lower dimensional space are also cal-

culated using Euclidean distance. We already know how to calculate Euclidean dis-

tances. For example, we have to find the distance between points i and j, and let’s say

A

B

C

d23 = distance between point B and C

d12 = distance
between point
A and B

d13 = distance
between point
A and C

BA C

Not to scaleNot to scale

A

B

C

Not to scale

2D representation of the points

1D representation of the points

3D representation of the points

180 CHAPTER 6 Dimensionality reduction

the distance is dij. The distance can be given by the Euclidean distance formula given

by equation 6.1 in a 2D space:

(6.1)

Recall in chapter 2, we discussed other distance functions like Manhattan distance,

Euclidean distance, etc. You are advised to refresh your memory on chapter 2.

6.2.2 Nonmetric MDS

We just now noted that Euclidean distance can be used to calculate the distance

between two points. Sometimes it is not possible to take the actual values of the dis-

tances, like when dij is the result of an experiment where subjective assessments were

made or, in other words, where a rank was allocated to the various data parameters.

For example, if the distance between points 2 and 5 was at rank 4 in the original data,

in such a scenario, it will not be wise to use absolute values of dij, and hence relative

values or rank values have to be used. Here, distance can mean a kind of ranking—for

example, who came first in a race. This is the process in nonmetric MDS. For exam-

ple, imagine we have four points: A, B, C, and D. We wish to rank the respective dis-

tances between these four points. The respective combinations of points can be A and

B, A and C, A and D, B and C, B and D, and C and D. Their distances can be ranked as

shown in table 6.1.

So, in the nonmetric MDS method, instead of using the actual distances, we use the

respective ranks of the distance. We next move on to the metric MDS method.

 We know that in classical MDS, the original and fitted distances are represented in

the same metric. In metric MDS, it is assumed that the values of dij can be transformed

into Euclidean distances by employing some parametric transformation on the data-

sets. In some articles, you might find classical and metric MDS used interchangeably.

 In MDS, as a first step, the respective distances between the points are calculated.

Once the respective distances have been calculated, then MDS will try to represent the

Table 6.1 The respective distance between four points and the ranks of the distances

Pair of points Distance Ranks of the respective distances

A and B 100 3

A and C 105 4

A and D 95 2

B and C 205 6

B and D 150 5

C and D 55 1

1816.2 Multidimensional scaling

higher dimensional data point in a lower dimensional space. To perform this, an opti-

mization process has to be carried out so that the optimum number of resultant dimen-

sions can be chosen. Hence, a loss function or cost function has to be optimized.

COST FUNCTION

We use algorithms to predict the values of a variable. For example, we might use some

algorithm to predict the expected demand of a product next year. We would want the

algorithm to predict as accurately as possible. Cost functions are a simple method to

check the performance of the algorithms.

 Cost function is a simple technique to measure the effectiveness of our algorithms.

It is the most common method used to gauge the performance of a predictive model.

It compares the original values and the predicted values by the algorithm and calcu-

lates how wrong the model is in its prediction.

 As you would imagine, in an ideal solution, we would want the predicted values to

be the same as the actual values, which is very difficult to achieve. If the predicted val-

ues differ a lot from the actual values, the output of a cost function is higher. If the

predicted values are closer to the actual values, then the value of a cost function is

lower. A robust solution is one that has the lowest value of the cost function. Hence,

the objective to optimize any algorithm will be to minimize the value of the cost func-

tion. Cost function is also referred to as loss function; these two terms can be used

interchangeably.

 In metric MDS, we can also call the cost function stress. It is just another name for

cost function. The formula for stress is given in equation 6.2:

(6.2)

In the equation,

 Term StressD is the value the MDS function has to minimize.

 The data points with the new set of coordinates in a lower dimensional space

are represented by x1, x2, x3…. xN.

 The term ||xi – xj|| is the distance between two points in their lower dimensional

space.

 The term dij is the original distance between the two points in the original mul-

tidimensional space.

By looking at the equation, we can see that if the values of ||xi – xj|| and dij are close to

each other, the value of the resultant stress will be small.

NOTE Minimizing the value of stress is the objective of the loss function.

To optimize this loss function, we can use multiple approaches. One of the most

famous methods is using a gradient descent that was originally proposed by Kruskal

182 CHAPTER 6 Dimensionality reduction

and Wish in 1978. The gradient descent method is very simple to understand and can

be explained using a simple analogy.

 Imagine you are standing on top of a mountain and you want to get down. You want

to choose the fastest path because you want to get down as fast as possible (no, you can-

not jump!). So, to take the first step, you look around and, whichever is the steepest

path, you take a step in that direction and reach a new point. Then again, you take a

step in the steepest direction. This process is shown in the first diagram in figure 6.3.

Figure 6.3 A person standing on top of a mountain and trying to get down. The process of gradient descent follows

this method (left). The actual process of optimization of a cost function in gradient descent process. Note that at

the point of convergence, the value of the cost function is minimal (right).

Now say an algorithm has to achieve a similar feat; the process is represented in the

right diagram in figure 6.3, wherein a loss function starts at a point and finally reaches

the point of convergence. At this point of convergence, the cost function is minimal.

 MDS differs from the other dimensionality reduction techniques. As compared to

techniques like PCA, MDS does not make any assumptions about the dataset and hence

can be used for a larger number of datasets. Moreover, MDS allows the use of any dis-

tance measurement metric. Unlike PCA, MDS is not an eigenvalue-eigenvector tech-

nique. Recall in PCA, the first axis captures the maximum amount of variance, the

second axis has the next best variance, and so on. In MDS, there is no such condition.

The axes in MDS can be inverted or rotated as needed. Also, in most of the other dimen-

sional reduction methods used, the algorithms do calculate a lot of axes, but they cannot

be viewed. In MDS, a smaller number of dimensions are explicitly chosen at the start.

Hence there is less ambiguity in the solution. Further, in other algorithms, generally,

there is only one unique solution, whereas MDS tries to iteratively find the most accept-

able solution. It means that in MDS there can be multiple solutions for the same dataset.

 But at the same time, the computation time required for MDS is greater for bigger

datasets—and there is a catch in the gradient descent method used for optimization

(see figure 6.4). Let’s refer to the mountain example we covered earlier. Imagine that

while you are coming down from the top of the mountain, the starting point is A, and

Loss

Value of weight

Point of convergence or where
the cost function is minimum

Starting point

1836.2 Multidimensional scaling

the bottom of the mountain is point C. While you are coming down, you reach point

B. As you can see in the left diagram in the figure, there is a slight elevation around

point B. At this point B, you might incorrectly conclude that you have reached the

bottom of the mountain. In other words, you will think that you have finished your

task. This is the problem of the local minima.

Figure 6.4 While the first figure is the point of convergence and represents the gradient descent method, note

that in the second figure the global minima is somewhere else, while the algorithm can be stuck at a local minima.

The algorithm might check that it has optimized the cost function and reached the point of global minima, whereas

it has only reached the local minima. In a local minima, there is no direction that is ascending; all the directions

descend. The algorithm, if purely local, has no information about other deeper minima existing beyond a potentially

small hill.

It is a possibility that instead of a global minimum, the loss function might be stuck in

a local minima. The algorithm might think that it has reached the point of conver-

gence, while the complete convergence might not have been achieved, and we are at a

local minimum.

 There is still a question to be answered about the efficacy of the MDS solution.

How can we measure the effectiveness of the solution? In the original paper, Kruskal

recommended the stress values to measure the goodness-of-fit of the solution, which

are shown in table 6.2. The recommendations are mostly based on the empirical expe-

rience of Kruskal. These stress values are based on Kruskal’s experience.

Table 6.2 Stress values and their goodness of fit

Stress values Goodness of fit

0.200 Poor

0.100 Fair

0.050 Good

0.025 Excellent

0.000 Perfect

Local minima

C

A

Loss

Value of weight

Global minima

Local minima

B

184 CHAPTER 6 Dimensionality reduction

The next logical question is: How many final dimensions should we choose? A scree

plot provides the answer, as shown in figure 6.5. Recall in chapter 2 we used a similar

elbow method to choose the optimal number of clusters in k-means clustering. For

MDS too, we can use the elbow method to determine the optimal number of compo-

nents to represent the data.

6.3 Python implementation of MDS

For the Python implementation of the MDS method we will use the famous Iris data-

set, which we have used previously. Using the algorithm is quite simple, thanks to the

libraries available in the scikit learn package.

NOTE The implementation is generally simple as the heavy lifting is done by
the libraries.

The steps are as follows:

1 Load the libraries. The usual suspects are sklearn, matplotlib, and numpy, and

we also load MDS from sklearn:

import numpy as np
from sklearn.datasets import load_iris

Exercise 6.1

Answer these questions to check your understanding:

1 What is the difference between metric and nonmetric MDS algorithms?

2 Gradient descent is used to maximize the cost. True or False?

3 Explain the gradient descent method using a simple example.

Selecting k with the elbow method

S
tr

e
s
s

Number of components

Figure 6.5 Scree plot to find the

optimal number of components.

It is similar to the k-means

solution; we have to look for the

elbow in the plot.

1856.3 Python implementation of MDS

import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

2 Load the dataset. The Iris dataset is available in the sklearn library, so we need

not import Excel or .csv files here:

raw_data = load_iris()
dataset = raw_data.data

3 A requirement for MDS is that the dataset should be scaled before the actual

visualization is done. We use the MixMaxScalar() function to achieve this. Min-

Max scaling simply scales the data using the formula in equation 6.3:

(6.3)

d_scaler = MinMaxScaler()
dataset_scaled = d_scaler.fit_transform(dataset)

As an output of this step, the data is scaled and ready for the next step of

modeling.

4 Invoke the MDS method from the sklearn library. The random_state value

allows us to reproduce the results. We have chosen the number of components

as 3 for the example:

mds_output = MDS(3,random_state=5)

5 Fit the scaled data created earlier using the MDS model:

data_3d = mds_output.fit_transform(dataset_scaled)

6 Declare the colors we wish to use for visualization. Next, the data points are

visualized in a scatter plot:

mds_colors = ['purple','blue', 'yellow']

for i in np.unique(raw_data.target):

 d_subset = data_3d[raw_data.target == i]

 x = [row[0] for row in d_subset]

 y = [row[1] for row in d_subset]

 plt.scatter(x,y,c=mds_colors[i],label=raw_data.target_names[i])

plt.legend()

plt.show()

The output of the preceding code is shown in figure 6.6.

186 CHAPTER 6 Dimensionality reduction

This example of Python implementation is a visualization of the Iris data. It is quite a

simple example, as it does not involve stress and optimization for the number of com-

ponents. In other words, we need a more complex dataset to really optimize MDS. We

will now work on a curated dataset to implement MDS (see figure 6.7).

Figure 6.7 Various cities and their respective distances between each other

Let us assume we have five cities and the respective distance between them is given in

figure 6.7. The steps are as follows:

1 We have already imported the libraries in the last code:

import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

Figure 6.6 Output for the Iris data

1876.3 Python implementation of MDS

2 Create the dataset. Although we create a dataset here, in real business scenar-

ios, it will be in the form of distances only (see figure 6.8):

data_dummy_cities = {'A':[0,40,50,30,40],
 'B':[40,0,40,50,20],
 'C':[50,40,0,20,50],
 'D':[30,50,20,0,20],
 'E':[40,20,50,20,0],
 }
cities_dataframe = pd.DataFrame(data_dummy_cities, index
=['A','B','C','D','E'])
cities_dataframe

3 Use the MinMaxScalar() function to scale the dataset as we did in the last cod-

ing exercise:

scaler = MinMaxScaler()
df_scaled = scaler.fit_transform(cities_dataframe)

Now we work toward finding the most optimal number of components. We will iterate

for different values of the number of components. For each of the values of the num-

ber of components, we will get the value of stress. The point at which a kink is

observed is the optimal number of components.

 As a first step, we will declare an empty dataframe, which can be used to store the

values of the number of components and corresponding stress values. Then we iterate

from 1 to 10 in a for loop. Finally, for each of the values of components (1 to 10), we

get the respective values of stress:

MDS_stress = []
for i in range(1, 10):
 mds = MDS(n_components=i)
 pts = mds.fit_transform(df_scaled)
 MDS_stress.append(mds.stress_)

4 Now that we have the values of stress, we will plot these values in a graph. The

respective labels for each of the axes are also given. Look at the kink at values 2

and 3 in figure 6.9. These can be the optimal values of the number of

components:

Figure 6.8 Creating the dataset

188 CHAPTER 6 Dimensionality reduction

plt.plot(range(1, 10), MDS_stress)
plt.xticks(range(1, 5, 2))
plt.title('Plot of stress')
plt.xlabel('Number of components')
plt.ylabel('Stress values')
plt.show()

Figure 6.9 Scree plot to select the optimized number of components

5 Run the solution for the number of components = 3. If we look at the values of

stress, number of components = 3, it generates the minimum value of stress as

0.00665 (see figure 6:10):

mds = MDS(n_components=3)
x = mds.fit_transform(df_scaled)
cities = ['A','B','C','D','E']

plt.figure(figsize=(5,5))
plt.scatter(x[:,0],x[:,1])
plt.title('MDS with Sklearn')
for label, x, y in zip(cities, x[:, 0], x[:, 1]):
 plt.annotate(
 label,
 xy = (x, y),
 xytext = (-10, 10),
 textcoords = 'offset points'
)
plt.show()
print(mds.stress_)

This concludes our discussion on the MDS algorithm. We discussed the foundation

and concepts, pros and cons, algorithm assessment, and Python implementation of

MDS. As one of the nonlinear dimensionality reduction methods, it is a great solution

for visualization and dimensionality reductions.

1896.4 t-distributed stochastic neighbor embedding

6.4 t-distributed stochastic neighbor embedding

If a dataset is really high dimensional, the analysis becomes cumbersome. The visual-

ization is even more confusing. We have covered that in great detail in the curse of

dimensionality section in chapter 3. You are advised to revisit the concept before pro-

ceeding if you need a refresher.

 One such really high-dimensional dataset can be image data. We find it difficult to

comprehend such data due to anything beyond 3 dimensions being increasingly diffi-

cult for us to intuit.

 You may have used facial recognition software on your smartphone. For such solu-

tions, facial images have to be analyzed, and machine learning models have to be

trained. Look at the pictures in figure 6.11: we have a human face, a bike, a vacuum

cleaner, and a screen capture of a phone.

 Image is a complex data type. Each image is made up of pixels, and each pixel can

be made up of RGB (red, green, blue) values. Values for each of the RGB can range

from 0 to 255. The resulting dataset will be a very high-dimensional dataset.

Figure 6.11 Images are quite complex to decipher by an algorithm. Images can be of

any form and can be of a person, a piece of equipment, or even a phone screen.

MDS with sklearn

D

E

A

C

B
Figure 6.10 Output for the MDS dataset:

representation of the five cities in a plot

190 CHAPTER 6 Dimensionality reduction

Now recall PCA, which we studied in chapter 3. PCA is a linear algorithm. Thus, its

capability to resolve nonlinear and complex polynomial functions is limited. More-

over, when a high-dimensional dataset has to be represented in a low-dimensional

space, the algorithm should keep similar data points close to each other, which can be

a challenge in linear algorithms. PCA, as a linear dimension reduction technique,

tries to separate the different data points as far away from each other as possible, and

tries to maximize the variance captured in the data. The resulting analysis is not

robust and might not be best suited for further use and visualization. Hence, we have

nonlinear algorithms like t-SNE to help.

 t-SNE is a nonlinear dimensionality reduction technique that is quite handy for

high-dimensional data. It is based on stochastic neighbor embedding, which was devel-

oped by Sam Roweis and Geoffrey Hinton. The t-distributed variant was proposed by

Lauren van der Maaten. Thus, t-SNE is an improvement of the SNE algorithm.

 At a high level, SNE measures the similarity between instance pairs in a high-dimen-

sional space and in a low-dimensional space. A good solution is where the difference

between these similarity measures is the least, and SNE then optimizes these similarity

measures using a cost function similar to what we have discussed for MDS.

 We examine the step-by-step process of t-SNE next. The process described is a little

heavy on mathematics:

1 Consider a high-dimensional space and some points in it.

2 Measure the similarities between the various points in the high-dimensional

space mentioned in the last point. For a point xi, we will then create a Gaussian

distribution centered at that point. We have already studied Gaussian or normal

distribution in chapter 2. The Gaussian distribution is shown in figure 6.12.

Figure 6.12 Gaussian or normal distribution.

1916.4 t-distributed stochastic neighbor embedding

3 Measure the density of points (let’s say xj) that fall under that Gaussian distribu-

tion and then renormalize them to get the respective conditional probabilities

(pj |i). For the points that are nearby and hence similar, this conditional proba-

bility will be high, and for the points that are far and dissimilar, the value of

conditional probabilities (pj |i) will be very small. These values of probabilities

are those in the high-dimensional space. For curious readers, the mathematical

formula for this conditional probability is presented as equation 6.4

(6.4)

where  is the variance of the Gaussian distribution centered at xi . The mathe-

matical proof is beyond the scope of this book.

4 Measure one more set of probabilities in the low-dimensional space. For this set

of measurements, we use the Cauchy distribution, described next. We use Kull-

back-Liebler (KL) divergence for measuring the difference between two proba-

bility distributions.

6.4.1 Cauchy distribution

The Cauchy distribution belongs to the family of continuous probability distributions.

Though there is a resemblance with the normal distribution, as we have represented

in figure 6.13, the Cauchy distribution has a narrower peak and spreads out more

−10 −8 −6 −4 −2 0 2 4 6 8 10

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 6.13 Comparison of Gaussian distribution vs. Cauchy distribution. (Image source: Quora)

192 CHAPTER 6 Dimensionality reduction

slowly. It means that, compared to a normal distribution, the probability of obtaining

values far from the peaks is higher. Sometimes, the Cauchy distribution is known as

the Lorentz distribution. It is interesting to note that Cauchy does not have a well-

defined mean, but the median is the center of symmetry.

1 Consider we get yi and yj as the low-dimensional counterparts for the high-

dimensional data points xi and xj. So we can calculate the probability score like

we did in the last step. Using the Cauchy distribution, we can get a second set of

probabilities qj |i too. The mathematical formula is shown in equation 6.5:

(6.5)

2 So far, we have calculated two set of probabilities (pj |i) and (qj |i). In this step,

we compare the two distributions and measure the difference between the two.

In other words, while calculating (pj |i) we measured the probability of similarity

in a high-dimensional space whereas for (qj |i) we did the same in a low-dimen-

sional space. Ideally, the mapping of the two spaces is similar, and for that, there

should not be any difference between (pj |i) and (qj |i). So the SNE algorithm

tries to minimize the difference in the conditional probabilities (pj |i) and (qj |i),

similar to what we have done with MDS for the distance in high- and low-dimen-

sional spaces.

3 The difference between the two probability distributions is done using KL

divergence.

DEFINITION KL divergence or relative entropy is used to measure the differ-
ence between two probability distributions. Usually, one probability distribu-
tion is the data or the measured scores, and the second probability
distribution is an approximation or the prediction of the original probability
distribution—for example, if the original probability distribution is X and
the approximated one is Y. KL divergence can be used to measure the differ-
ence between X and Y probability distributions. In absolute terms, if the
value is 0, then it means that the two distributions are identical. The KL
divergence is applicable for neurosciences, statistics, and fluid mechanics,
among others.

4 To minimize the KL cost function, we use the gradient descent approach. We

have already discussed the gradient descent approach in section 6.2 where we

discussed the MDS algorithm.

There is one more important factor we should be aware of while we work on t-SNE,

and that is perplexity. Perplexity is a hyperparameter that allows us to control and opti-

mize the number of close neighbors each of the data points has.

NOTE As per the official paper, a typical value for perplexity lies between 5
and 50.

https://shortener.manning.com/nRVa
https://shortener.manning.com/nRVa

1936.4 t-distributed stochastic neighbor embedding

There can be one additional nuance: the output of a t-SNE algorithm might never be

the same on successive runs. We have to optimize the values of the hyperparameters to

receive the best output.

6.4.2 Python implementation of t-SNE

We will use two datasets in this example. The first one is the Iris dataset, which we have

already used more than once in this book. The second dataset is quite an interesting

one: the MNIST dataset is a database of handwritten digits. It is one of the most

famous datasets used to train image processing solutions and generally is considered

the “Hello World” program for image detection solutions. An image representation is

shown figure 6.14.

The steps for the Iris dataset are as follows:

1 Import the necessary libraries. Note that we have imported the MNIST dataset

from the keras library.

rom sklearn.manifold import TSNE
from keras.datasets import mnist
from sklearn.datasets import load_iris
from numpy import reshape
import seaborn as sns
import pandas as pd

Exercise 6.2

Answer these questions to check your understanding:

1 Explain Cauchy distribution in your own words.

2 PCA is a nonlinear algorithm. True or False?

3 KL divergence is used to measure the difference between two probability distri-
butions. True or False?

Figure 6.14 MNIST dataset

194 CHAPTER 6 Dimensionality reduction

TIP If you are not able to install modules in your Python code, refer to the
appendix where we provide a solution.

2 Load the Iris dataset. The dataset comprises two parts: one is the “data” and the

second is the respective label or “target” for it. It means that “data” is the

description of the data and “target” is the type of iris. We print the features and

the labels using code:

iris = load_iris()
iris_data = iris.data
iris_target = iris.target
iris.feature_names
iris.target_names

3 Invoke the t-SNE algorithm. We are using the n_components=2, verbose=1, and

random_state=5 to reproduce the results. Then the algorithm is used to fit the

data (see figure 6.15):

tsne = TSNE(n_components=2, verbose=1, random_state=5)
fitted_data = tsne.fit_transform(iris_data)

Figure 6.15 Output of the code when we are fitting the algorithm

4 Plot the data. This step allows us to visualize the data fitted by the algorithm in

the last step.

First, we will initiate an empty dataframe. We will add three columns, one at a time.

We start with iris_target, followed by tSNE_first_component and tSNE_second_

component. tSNE_first_component is the first column of the fitted_data dataframe,

and therefore the index is 0. tSNE_second_component is the second column of the

fitted_data dataframe and hence the index is 1. Finally, we represent the data in a

scatterplot in figure 6.16:

iris_df = pd.DataFrame()
iris_df["iris_target"] = iris_target
iris_df["tSNE_first_component"] = fitted_data[:,0]
iris_df["tSNE_second_component"] = fitted_data[:,1]

1956.4 t-distributed stochastic neighbor embedding

sns.scatterplot(x="tSNE_first_component", y="tSNE_second_component",
hue=iris_df.iris_target.tolist(),
 palette=sns.color_palette("hls", 3),
 data=iris_df).set(title="Iris data tSNE projection")

Figure 6.16 t-SNE projection of the Iris dataset. Note how we are getting

three separate clusters for the three classes we have in the dataset.

To implement the algorithm for the MNIST dataset, load the libraries and dataset.

The libraries were already loaded in the last code example. Now load the dataset. The

dataset requires reshape, which is done here (see figure 6.17):

(digit, digit_label), (_ , _) = mnist.load_data()

digit = reshape(digit, [digit.shape[0], digit.shape[1]*digit.shape[2]])

Step 2: the subsequent steps are exactly same to the last example we used.

tsne_MNIST = TSNE(n_components=2, verbose=1, random_state=5)

fitted_data = tsne_MNIST.fit_transform(digit)

mnist_df = pd.DataFrame()

mnist_df["digit_label"] = digit_label

mnist_df["tSNE_first_component"] = fitted_data[:,0]

mnist_df["tSNE_second_component"] = fitted_data[:,1]

sns.scatterplot(x="tSNE_first_component", y="tSNE_second_component",

hue=mnist_df.digit_label.tolist(),

 palette=sns.color_palette("hls", 10),

 data=mnist_df).set(title="MNIST data T-SNE projection")

Iris data t-SNE projection

196 CHAPTER 6 Dimensionality reduction

There are a few important points to keep in mind while running t-SNE:

 Run the algorithm with different values of hyperparameters before finalizing a

solution.

 Ideally, perplexity should be between 5 and 50, and for an optimized solution,

the value of perplexity should be less than the number of points.

 T-SNE guesses the number of close neighbors for each of the points. For this

reason, a dataset that is denser will require a much higher perplexity value.

 Note that perplexity is the hyperparameter that balances the attention given to

both the local and the global aspects of the data.

t-SNE is a widely popular algorithm. It can be used for studying the topology of an

area, but a single t-SNE cannot be used for making a final assessment. Instead, multi-

ple t-SNE plots should be created to make any final recommendation. Sometimes

there are complaints that t-SNE is a black-box algorithm. This might be true to a cer-

tain extent. What makes the adoption of t-SNE harder is that it does not generate the

same results in successive iterations. Hence, you might find t-SNE recommended only

for exploratory analysis.

6.5 Uniform manifold approximation projection

UMAP is a powerful and popular dimensionality reduction technique. It is designed

to preserve both the local and global structures of the dataset while reducing the com-

plexity and dimensions of the high-dimensional dataset to a low-dimensional dataset.

 UMAP was introduced in 2018 by Lealand McInnes, John Healy, and James Mel-

ville. UMAP makes the data more suitable for visualizations and data analysis. This

relates to the concepts of topology and manifold theory. UMAP assumes that the high-

dimensional dataset often lies on a manifold, which means a low-dimensional struc-

ture is embedded in a higher-dimensional space. Hence, it attempts to project this

manifold into a lower dimensional space, preserving both the nearest neighbor

MNIST data t-SNE projection

Figure 6.17 Output of t-SNE

for the 10 classes of digits

represented in different

shades of gray

1976.5 Uniform manifold approximation projection

relationships, which is nothing but the local structure, and the larger relationships,

which is the global structure.

6.5.1 Working with UMAP

UMAP methodology uses the concept of fuzzy simplicity sets. These sets represent the

probability distribution of distances between various data points and capture the

underlying manifold structures.

 The first step in UMAP is to construct a weighted graph where each of the data

points is connected to its nearest neighbor based on a distance metric. Generally, the

Euclidean distance is used as the distance metric. This graph construction is an

abstract representation of the data structure in high dimensions.

 The next step is to optimize the graph. The graph is optimized in a lower dimen-

sion space by minimizing cross-entropy loss between the original high-dimensional

relationships and the newly created low-dimensional relationships. This uses the sto-

chastic gradient descent, producing the UMAP embeddings. We will study stochastic

gradient descent in chapter 9.

 There are two key parameters for UMAP:

 n_neighbours—The number of nearest neighbors to consider for each point.

Using this parameter, we balance the preservation of the local data structure as

compared to the global data structure.

 min_dist—This is used to control how tightly the points are clustered together.

Smaller values of minimum distance keep the points much closer and hence

create deeper clusters. The larger value for minimum distance will create

lighter clusters, which are spread out.

6.5.2 Using UMAP

The various uses of UMAP are as follows:

 One of the most popular uses of UMAP is the visualization of high-dimensional

datasets in the bioinformatics field. Gene datasets are quite complex and multi-

dimensional, where each data point might be represented by hundreds or thou-

sands of attributes. Using UMAP, researchers can virtually inspect the clusters

and the underlying relationships in the dataset. The solution helps them iden-

tify cell types, developmental stages, and gene expression patterns.

 UMAP is also applied to the natural language processing field by reducing the

dimensionality of embeddings. It helps in the visualization of relationships

between words or sentences or documents, making it easier to understand the

similarities.

 UMAP can also be applied to images. It helps in the visualization of the plaster-

ing of images based on various similarities, hence it is quite useful for competi-

tive vision tasks to understand how similar images can be clustered together.

 UMAP can be used with other clustering algorithms like k-means or DBSCAN.

It can uncover the hidden patterns in large datasets and since it preserves both

198 CHAPTER 6 Dimensionality reduction

local and global structures, the clusters found in lower dimensional representa-

tions often provide more important groupings as compared to the original

high-dimensional dataset.

In addition to helping with visualizations, UMAP can also be used as a preprocessing

step to reduce the dimensions of data. It can be used as an alternative to PCA or other

solutions. By reducing the number of dimensions in a dataset, the model’s perfor-

mance might be improved and the computation time is reduced.

 The use of UMAP in Python is straightforward. The library umap-learn allows us to

use the power of UMAP.

6.5.3 Key points of UMAP

Let’s now cover the key points of UMAP and compare it to other algorithms:

 Since UMAP is a nonlinear solution, it can capture more complex datasets and

patterns as compared to PCA. Recall that PCA is a linear dimensionality tradi-

tion technique, so when the data is not on a simple linear manifold, UMAP

proves to be more accurate.

 The goal of PCA is to explain the maximum variance in the entire dataset. On

the other hand, UMAP balances both local and global structures and hence is

more versatile for tasks like anomaly detection.

 As compared to PCA, UMAP can be used for larger datasets.

 UMAP is faster than the other nonlinear solution, t-SNE. t-SNE can preserve the

local structure of the data, but it struggles with preserving the global structure,

and it can lead to a misleading interpretation of the clusters. UMAP does a bet-

ter job as it preserves both local and global structures.

 UMAP results are much more stable and consistent across multiple iterations.

For other algorithms, the results can be unstable and might change with differ-

ent values of random seeds.

UMAP has gained a lot of popularity recently and has become a go-to tool for

machine learning and AI solutions. It is fast and can preserve both local and global

data structures. Hence it is a strong option compared to other dimensionality reduc-

tion solutions like PCA, t-SNE, and autoencoders.

6.6 Case study

In chapter 3, we explored a case study for the telecom industry reducing dimensional-

ity. In this chapter, we will examine a small case study wherein t-SNE or MDS can be

utilized for dimensionality reduction.

 Have you heard about hyperspectral images? As you know, we humans see the col-

ors of visible light in mostly three bands: long, medium, and short wavelengths. The

long wavelengths are perceived as red, medium as green, and short as blue. All the

other colors human beings perceive are simply mixtures of these three, and that is

what allows screens and printers to work with only three colors. Spectral

1996.6 Case study

imaging, on the other hand, divides the spec-

trum into many more bands, and this technique

can be extended beyond the visible and hence is

used across biology, physics, geoscience, astron-

omy, agriculture, and many more avenues.

Hyperspectral imaging collects and processes

information from across the electromagnetic

spectrum. It obtains the spectrum for each of the

pixels in the image. See figure 6.18.

 One such dataset is the Pavia University data-

set. The dataset is curated by the ROSIS sensor

in Pavia, northern Italy. The details of the dataset

are given next, and the dataset can be down-

loaded from https://mng.bz/nRVa.

 There are 103 spectral bands in this dataset.

The HIS size is 610 * 340 pixels, and it contains

nine classes. Such a type of data can be used for

crop analysis, mineral examination and exploration, etc. Since this data also contains

information about geological patterns, it is quite useful for scientific purposes. Before

developing any image recognition solution, we have to reduce the number of dimen-

sions for this dataset. The computation cost will be much higher if we have a large

number of dimensions. Hence, we want a lower representative number of dimensions.

Figure 6.19 shows a few example bands. You are advised to download the dataset

(which is also pushed at the GitHub repository) and use the various dimensionality

reduction techniques on the dataset to reduce the number of dimensions. There can

be many other image datasets and complex business problems where t-SNE and MDS

can be of pragmatic use.

Figure 6.18 Hyperspectral image of

“sugar end” potato strips shows

invisible defects (Source:

SortingExpert, CC BY-SA 3.0)

Figure 6.19

Example of bands in

the dataset. These

are only random

examples.

https://mng.bz/nRVa

200 CHAPTER 6 Dimensionality reduction

6.7 Concluding thoughts

Dimensionality reduction is quite an interesting and useful field. It makes machine

learning less expensive and less time-consuming. Imagine that you have a dataset with

thousands of attributes or features. You do not know the data very well, the business

understanding is limited, and, at the same time, you have to find the patterns in the

dataset. You are not even sure if the variables are all relevant or just random noise. At

such a moment, when we want to make the dataset less complex to crack and reduce

the computational time, dimensionality reduction is the solution.

 We covered dimensionality reduction techniques earlier in the book. This chapter

covers three advanced techniques: t-SNE, MDS, and UMAP. All three techniques

should not be considered a substitute for the other, easier techniques we discussed.

Rather, they can be useful if we are not getting meaningful results with basic algo-

rithms. It is always advised to use PCA first and then try the advanced techniques.

 The complexity of the book is increasing. This chapter started with images—but

we have only wet our toes. In the next chapter, we deal with text data. Perhaps you will

find it very interesting and useful.

6.8 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Use the vehicles dataset used in chapter 2 for clustering and implement MDS

on it. Compare the performance on clustering before and after implementing

MDS.

 Get the datasets used in chapter 2 for Python examples and use them for imple-

menting MDS.

 For MDS, refer to the following research papers:

– “Dimensionality Reduction: A Comparative Review,” by Lauren van der

Maaten, Eric Postma, and H. Japp Van Den Herik: https://mng.bz/eyxQ

– “Multidimensional Scaling-Based Data Dimension Reduction Method for

Application in Short-Term Traffic Flow Prediction for Urban Road Network,”

by Satish V. Ukkusuri and Jian Lu: https://mng.bz/pKmz

 Get t-SNE research papers from the following links and study them:

– “Visualizing Data Using t-SNE,” by Laurens van der Maaten and Geoffrey

Hinton: https://mng.bz/OBaE

– “The Art of Using t-SNE for Single Cell Transcriptomics”: https://mng.bz/

YD9A

 See the paper “Performance Evaluation of t-SNE and MDS Dimensionality

Reduction Techniques with KNN, SNN, and SVM Classifiers”: https://arxiv.org/

pdf/2007.13487.pdf

https://mng.bz/OBaE
https://arxiv.org/pdf/2007.13487.pdf
https://arxiv.org/pdf/2007.13487.pdf
https://mng.bz/YD9A
https://mng.bz/YD9A
https://mng.bz/pKmz
https://mng.bz/eyxQ

201Summary

Summary

 MDS is a dimensionality reduction technique that transforms high-dimensional

data into a lower-dimensional space while preserving distances.

 There are three types of MDS: classical, metric, and nonmetric.

 Classical MDS uses Euclidean distances, aligning original and fitted distances.

 Nonmetric MDS ranks distances rather than using absolute values.

 Metric MDS transforms distances to fit a lower dimensional space.

 MDS involves calculating distances and optimizing a stress cost function with

gradient descent, though it can be computationally intensive and is prone to

local minima problems.

 MDS works iteratively and does not make assumptions about data distribution,

making it versatile for choosing distance metrics compared to PCA.

 t-SNE is a nonlinear dimensionality reduction technique and is particularly

effective for high-dimensional and complex datasets like images.

 t-SNE optimizes similarity between data points in both high- and low-dimen-

sional spaces using the Cauchy distribution and KL divergence.

 t-SNE has an edge over PCA due to its nonlinear nature, though it involves

hyperparameters like perplexity.

 UMAP is another dimensionality reduction method that efficiently preserves

both local and global data structures and is faster and more stable than t-SNE.

 Python implementations are available for both MDS and t-SNE.

 MDS is one of the advanced dimensionality reduction techniques, requiring

optimization of a loss function or cost function.

202

Unsupervised learning
for text data

Everybody smiles in the same language.

—George Carlin

Our world has so many languages. These languages are the most common medium

of communication to express our thoughts and emotions. These words can be writ-

ten into text. In this chapter, we explore the sorts of analysis we can do on text data.

Text data falls under unstructured data and carries a lot of useful information and

hence is a useful source of insights for businesses. We use natural language process-

ing (NLP) to analyze the text data.

This chapter covers

 Text data analysis: use cases and challenges

 Preprocessing and cleaning text data

 Vector representation methods for text data

 Sentiment analysis and text clustering using

Python

 Generative AI applications for text data

2037.2 Text data is everywhere

 At the same time, to analyze text data, we have to make the data analysis-ready. Or,

in very simple terms, since our algorithms and processors can only understand num-

bers, we have to represent the text data in numbers or vectors. We will explore all these

steps in this chapter. Text data holds the key to quite a few important use cases, such as

sentiment analysis, document categorization, and language translation, to name a few.

We will cover the use cases using a case study and develop a Python solution on the

same.

 The chapter starts with defining text data, sources of text data, and various use cases

of text data. We will then move on to the steps and processes to clean and handle the

text data. We cover the concepts of NLP, mathematical foundations, and methods to

represent text data into vectors. We will create Python codes for the use cases. Toward

the end, we share a case study on text data. Finally, we will also look into the generative

AI-based (GenAI) solutions. We have not covered GenAI concepts yet in the book, as

they are in part 3. But here we introduce the concepts in the light of text data.

 Welcome to the seventh chapter, and all the very best!

7.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have

used so far. The codes and datasets used in this chapter have been checked in at the

same GitHub location.

 You need to install the following Python libraries for this chapter: re, string, nltk,

lxml, requests, pandas, textblob, matplotlib, sys, sklearn, scikitlearn, and

warnings. Along with these, you will need numpy and pandas. With libraries, we can

use the algorithms very quickly.

7.2 Text data is everywhere

Recall in the very first chapter of the book we explored structured and unstructured

datasets. Unstructured data can be text, audio, image, or video. Examples of unstruc-

tured data and their respective sources are given in figure 7.1, where we explain the

primary types of unstructured data—text, images, audio, and video—along with exam-

ples. The focus of this chapter is on text data.

U
n

s
tr

u
c
tu

re
d

 d
a
ta

Text data

Images data

Audio data

Video data

Facebook reviews, tweets, customer
complaints, product reviews

Product images, objects

Call center recordings, radio ads

YouTube videos, product videos,
video ads, product shoots

Figure 7.1 Unstructured data can

be text, images, audio, or video. We

deal with text data in this chapter.

This list is not exhaustive.

204 CHAPTER 7 Unsupervised learning for text data

Language is perhaps our greatest tool for communication. When in written form, this

becomes text data. Today, thanks to widely accessible computers and smartphones,

text is everywhere. It is generated by writing blogs and social media posts, tweets, com-

ments, stories, reviews, chats, and comments, to name a few. Text data is generally

much more direct than images and can be emotionally expressive. It is useful for busi-

nesses to unlock the potential of text data and derive insights from it. They can under-

stand customers better, explore the business processes, and gauge the quality of

services offered.

 Have you ever reviewed a product or a service on Amazon? You award stars to a

product; at the same time, you can also input free text. Go to Amazon and look at

some of the reviews. You might find some reviews have a good amount of text as the

feedback. This text is useful for the product/service providers to enhance their offer-

ings. Also, you might have participated in a few surveys that ask you to share your feed-

back. Moreover, with the advent of Alexa, Siri, Cortona, etc., the voice command acts

as an interface between humans and machines—which is again a rich source of data.

Even the customer calls we make to a call center can be transcribed so that they

become a source of text data. These calls can be recorded, and using speech-to-text

conversion, we can generate a huge amount of text data.

7.3 Use cases of text data

Not all the use cases discussed in this section can implement unsupervised learning.

Some require supervised learning too. Nevertheless, for your knowledge, we share

both types of use cases, based on supervised learning and unsupervised learning:

 Sentiment analysis—You might have participated in surveys or given your feed-

back on products/surveys. These surveys generate tons of text data. That text

data can be analyzed, and we can determine whether the sentiment in the

review is positive or negative. In simple words, sentiment analysis gauges the

positivity or negativity of the text data. Hence, we can see the sentiment about a

product or service in the minds of the customers. We can use both supervised

and unsupervised learning for sentiment analysis.

 News categorization or document categorization—Look at the Google News web page

and you will find that each news item has been categorized to sports, politics,

science, business, or another category. Incoming news is classified based on the

content of the news, which is the actual text. Imagine the thousands of docu-

ments that are sorted in this manner. In this use case, it is clear that machine

learning is ideal, given the unfeasible amount of time and effort that would be

required to sort such items manually. Supervised learning solutions work well

for such problems.

 Language translation—Translation of text from one language to another is a

very interesting use case. Using NLP, we can translate between languages.

Language translation is very tricky, as different languages have different

2057.4 Challenges with text data

grammatical rules. Generally, deep learning–based solutions are the best fit for

language translation.

 Spam filtering—Email spam filters can be set up using NLP and supervised

machine learning. A supervised learning algorithm can analyze incoming mail

parameters and give a prediction if that email belongs to a spam folder or not.

The prediction can be based on various parameters like sender email ID, sub-

ject line, body of the mail, attachments, time of mail, etc. Generally, supervised

learning algorithms are used here.

 Part-of-speech tagging—This is one of the popular use cases. It means that we can

distinguish the nouns, adjectives, verbs, adverbs, etc., in a sentence. Named-

entity recognition is also one of the famous applications of NLP. It involves

identifying a person, place, organization, time, or number in a sentence. For

example, John lives in London and works for Google. Named-entity recognition

can generate understanding like [John]Person lives in [London]Location and

works for [Google]organization.

 Sentence generation, captioning the images, speech-to-text or text-to-speech tasks,

and handwriting recognition—These are a few other significant and popular use

cases.

The use cases listed here are not exhaustive. There are tons of other use cases that can

be implemented using NLP. NLP is a very popular research field too. We share some

significant papers at the end of the chapter.

 You might have also heard about large language models (LLMs) like ChatGPT,

Bard, and Claude. They are algorithms that process natural language inputs and pre-

dict the next word based on what they have already seen. With GenAI in the picture, a

lot of the use cases can be solved by simply calling the API. ChatGPT can communi-

cate like a human with memory and serves as customer support for many services.

LLMs can summarize hundreds of pdf documents. You can even create applications

that can be used for getting answers from multiple documents and websites. Certainly,

GenAI has enhanced the power here.

 While text data is very important, at the same time it is quite difficult to analyze.

Remember, our computers and processors understand only numbers. So the text

needs to be represented as numbers so we can perform mathematical and statistical

calculations on it. Before diving into the preparation of text data, we cover some of

the challenges we face while working on text datasets.

7.4 Challenges with text data

Text is a difficult data type to work with. There are a large number of permutations to

express the same thought. For example, I might ask, “Hey buddy, what is your age?” or

“Hello there, may I know how old are you?”—they mean the same, right? The answer

to both the questions is the same, and it is quite easy for humans to decipher, but it

can be a daunting task for a machine.

206 CHAPTER 7 Unsupervised learning for text data

 Some of the most common challenges we face in this area are as follows:

 Text data can be complex to handle. There can be a lot of junk characters like

$^%*& present in the text.

 With the advent of modern communications, we have started to use short forms

of words; for example, “u” can be used for “you,” “brb” for “be right back,” and

so on. Additionally, the challenge is where the same word might mean some-

thing different to different people, or misspelling a single letter can change the

complete meaning of the word.

 Language is changing, unbounded, and ever-evolving. It changes every day and

new words are added to the language. If you do a simple Google search, you will

find that quite a few words are added to the dictionary each year.

 The world has close to 6,500 languages, and each one carries its own unique

characteristics. Each and every one completes our world. Each language follows

its own rules and grammar, which are unique in usage and pattern. Even the

writing can be different: some are written left to right, some right to left, and

some even vertically. The same emotion might take fewer or more words in dif-

ferent languages.

 The meaning of a word is dependent on the context. A word can be both an

adjective and a noun, depending on the context. Consider these examples:

– “This book is a must-read” and “Please book a room for me.”

– “Tommy” can be a name, but when used as “Tommy Hilfiger” its usage is

completely changed.

– “Apple” is both a fruit and a company.

– “April” is a month and can be a name too.

 Look at one more example: “Mark traveled from the UK to France and is work-

ing with John over there. He misses his friends.” Humans can easily understand

that “he” in the second sentence is Mark and not John, which might not be that

simple for a machine.

 There can be many synonyms for the same word, like “good” can be replaced by

“positive,” “wonderful,” “superb,” or “exceptional” in different scenarios. Words

like “studying,” “studious,” and “studies” are related to the same root word

“study.”

 The size of text data can be daunting too. Managing a text dataset, storing it,

cleaning it, and refreshing it is a herculean task.

Like any other machine learning project, text analytics follows the principles of

machine learning, albeit the precise process is slightly different. Recall in chapter 1 we

examined the process of a machine learning project, as shown in figure 7.2. You are

advised to refresh your memory on the process from chapter 1 if needed.

2077.6 Data cleaning

Figure 7.2 The overall steps in a data science project are the same for text data. The preprocessing of text data

is very different from the structured dataset.

Defining the business problem, data collection and monitoring, etc., remain the same.

The major difference is in the processing of the text, which involves data cleaning, cre-

ation of features, representation of text data, etc. We will cover this in the next section.

7.5 Preprocessing the text data

Text data, like any other data source, can be messy and noisy. We clean some of it in

the data discovery phase and a lot of it in the preprocessing phase. At the same time,

we should extract the features from our dataset. Some of the steps in the cleaning pro-

cess are common and can be implemented on most text datasets. Some text datasets

might require a customized approach. We start with cleaning the raw text data.

7.6 Data cleaning

As with any form of data analysis, ensuring good data quality is vital. The cleaner the

text data, the better the analysis. At the same time, preprocessing is not a straightfor-

ward task but rather is complex and time-consuming.

Exercise 7.1

Answer these questions to check your understanding:

1 Note the three most effective use cases for the text data.

2 Why is working on text data so tedious?

Data science project steps

Data
input

Survey

Data
preprocessing

Model
dataset

Archetype segmentation

Identify clusters within
data

Bayesian belief networks

Identify variable change
implication

Text mining using
cosine-similarity

Identify key factors
in user experience

Business outcome

• Extracted segments
 based on customer
 buying habits
• Variable dependency
 graphs and their
 implication on sales

C5

C4

C2

C1

C3

208 CHAPTER 7 Unsupervised learning for text data

 Text data must be cleaned as it contains a lot of junk characters, irrelevant words,

noise and punctuation, URLs, etc. The primary ways of cleaning the text data are

 Stopping word removal—Out of all the words that are used in any language, there

are some words that are most common. Stop words are the most common

words in a vocabulary that carry less importance than key words. Examples are

“is,” “an,” “the,” “a,” “be,” “has,” “had,” “it,” etc. Once we remove the stop words

from the text, the dimensions of the data are reduced and hence the complex-

ity of the solution is reduced.

We can define a customized list of stop words and remove them that way, or

there are standard libraries to remove the stop words.

At the same time, it is imperative that we understand the context very well

while removing the stop words. For example, if we ask a question “is it raining?”

then the answer “it is” is a complete answer in itself. When we are working with

solutions where contextual information is important, we do not remove stop

words.

 Frequency-based removal of words—Sometimes you might wish to remove the words

that are most common in your text or that are very unique. The process is to get

the frequency of the words in the text and then set a threshold of frequency. We

can remove the most common ones. Or maybe you wish to remove the ones

that have occurred only once/twice in the entire dataset. Based on the require-

ments, you will decide. At the same time, we should be cautious and observe

due diligence while removing the words.

 Library-based cleaning—This is done when we wish to clean the data using a pre-

defined and customized library. We can create a repository of words that we do

not want in our text and iteratively remove them from the text data. This

approach allows us flexibility to implement the cleaning of our own choice.

 Junk or unwanted characters—Text data, particularly tweets, comments, etc.,

might contain a lot of URLs, hashtags, numbers, punctuations, social media

mentions, special characters, etc. We might need to clean them from the text.

At the same time, we should be careful as some words that are not important for

one domain might be required for a different domain. If data has been scraped

from websites or HTML/XML sources, we need to get rid of all the HTML enti-

ties, punctuations, nonalphabet characters, and so on.

TIP Always keep business context in mind while cleaning the text data.

As we know, a lot of new types of expressions have entered the language—for

example, lol, hahahaha, brb, rofl, etc. These expressions are to be converted to

their original meanings. Even emojis like :-), ;-), etc., should be converted to

their original meanings.

 Data encoding—There are a few data encodings available like ISO/IEC, UTF-8,

etc. Generally, UTF-8 is the most popular one. But it is not a hard and fast rule

to always use UTF-8 only.

2097.7 Extracting features from the text dataset

 Lexicon normalization—Depending on the context and usage, the same word

might get represented in different ways. During lexicon normalization, we

clean such ambiguities. The basic idea is to reduce the word to its root form.

Hence, words that are derived from each other can be mapped to the central

word, provided they have the same core meaning.

Figure 7.3 shows that the same word, “eat,” has been used in various forms. The

root word is “eat,” but these different forms demonstrate the many different

representations for “eat.”

Here, we wish to map all these words like “eating,” “eaten,” etc., to their central

word, “eat,” as they have the same core meaning. There are two primary meth-

ods to work on this:

– Stemming is a basic rule-based approach for mapping a word to its core word.

It removes “es,” “ing,” “ly,” “ed,” etc., from the end of the word. For example,

studies will become “studi” and “studying” will become “study.” Being a rule-

based approach, the output spellings might not always be accurate.

– Lemmatization is an organized approach that reduces words to their dictio-

nary form. The lemma of a word is its dictionary or canonical form. For exam-

ple, “eats,” “eating,” “eaten,” etc., all have the same root word “eat.”

Lemmatization provides better results than stemming, but it takes more time.

These are only some of the methods to clean text data. These techniques will help,

but business acumen is required to further make sense of the dataset. We will clean

the text data using these approaches by developing a Python solution.

 Once the data is cleaned, we start with the representation of data so that it can be

processed by machine learning algorithms, which is our next topic.

7.7 Extracting features from the text dataset

We have explored the concepts and techniques to clean up messy text data. Now we

have cleaned the data, and it is ready to be used. The next step is to represent this data

in a format that can be understood by our algorithms. As we know, our algorithms can

only understand numbers.

 A very simple technique to encode text data in a way that it can be useful for

machine learning can be to simply perform one-hot encoding on our words and

Ate EatsEaten Eating

Eat

Figure 7.3 “Ate,” “eaten,”

“eats,” and “eating” all have

the same root word: “eat.”

Stemming and lemmatization

can be used to get the root word.

210 CHAPTER 7 Unsupervised learning for text data

represent them in a matrix—but certainly not a scalable one if you have a complete

document.

NOTE One-hot encoding is covered in the appendix.

The words can be first converted to lowercase and then sorted in alphabetical order.

Then a numeric label can be assigned to them. Finally, words are converted to binary

vectors. Let us understand using an example.

 If the text is “It is raining heavily,” we will use these steps:

1 Lowercase the words so the output will be “it is raining heavily.”

2 Arrange them in alphabetical order. The result is heavily, is, it, raining.

3 Assign place values to each word as heavily:0, is:1, it:2, raining:3.

4 Transform them into binary vectors as shown here:

[0. 0. 1. 0.] #it

[0. 1. 0. 0.] #is

[0. 0. 0. 1.] #raining

[1. 0. 0. 0.]] #heavily

As we can see, we are able to represent each of the words in binary vectors, where 0 or

1 is the representation for each of the words. Though this approach is quite intuitive

and simple to comprehend, it is pragmatically not possible when we have a massive

corpus and vocabulary.

NOTE Corpus refers to a collection of texts. It is Latin for “body.” It can be a
body of written words or spoken words, which can be used to perform a lin-
guistic analysis.

Moreover, handling massive data sizes with so many dimensions will be computation-

ally very expensive. The resulting matrix thus created will be very sparse too. Hence,

we should consider other means and ways to represent our text data.

 There are better alternatives than one-hot encoding. These techniques focus on

the frequency of the word or the context in which the word is being used. This scien-

tific method of text representation is much more accurate, robust, and explanatory.

There are multiple such techniques like term frequency-inverse document frequency

(TF-IDF), the bag of words approach, etc. We discuss a few of these techniques later in

the chapter. First, we need to examine the important concept of tokenization.

7.8 Tokenization

Tokenization is simply breaking a text or a set of text into individual tokens. It is the

building block of NLP. Look at the example in figure 7.4, where we have created indi-

vidual tokens for each word of the sentence. Tokenization is an important step as it

allows us to assign unique identifiers or tokens to each of the words. Once we have

allocated each word a specific token, the analysis becomes less complex.

2117.9 BOW approach

Tokens are usually used on individual words, but this is not always necessary. We are

allowed to tokenize a word or the subwords or characters in a word. In the case of sub-

words, the same sentence can have subword tokens as rain-ing (i.e., rain and ing as

separate subtokens).

 If we wish to perform tokenization at a character level, it can be r-a-i-n-i-n-g. In fact,

in the first step of the one-hot encoding approach discussed in the last section, tokeni-

zation was done on the words. Tokenization at a character level might not always be

used.

NOTE Tokenization is the building block for NPL solutions.

Once we have obtained the tokens, the tokens can be used to prepare a vocabulary. A

vocabulary is the set of unique tokens in the corpus.

 There are multiple libraries for tokenization. Regexp tokenization uses the given

pattern arguments to match the tokens or separators between the tokens. Whitespace

tokenization treats any sequence of whitespace characters as a separator. Then we

have blankline, which uses a sequence of blank lines as a separator. Finally, wordpunct

tokenizes by matching a sequence of alphabetic characters and a sequence of nonal-

phabetic and nonwhitespace characters. We will perform tokenization when we create

Python solutions for our text data.

 Next, we will explore more methods to represent text data. The first such method

is the bag of words (BOW) approach.

7.9 BOW approach

As the name suggests, all the words in the corpus are used. In the BOW approach, the

text data is tokenized for each word in the corpus, and then the respective frequency

of each token is calculated. During this process, we disregard the grammar, the order,

and the context of the word. We simply focus on the simplicity. Hence, we will repre-

sent each text (sentence or document) as a bag of its own words.

 In the BOW approach for the entire document, we define the vocabulary of the

corpus as all the unique words present in the corpus. Please note we use all the unique

words in the corpus. If we want, we can also set a threshold (i.e., the upper and lower

limit for the frequency of the words to be selected). Once we have the unique words,

each of the sentences can be represented by a vector of the same dimension as the

base vocabulary vector. This vector representation contains the frequency of each

word of the sentence in the vocabulary. It might sound complicated, but it is actually a

straightforward approach.

It is raining heavily outside

It is raining heavily outside

Figure 7.4 Tokenization

can be used to break a

sentence into different

tokens of words.

212 CHAPTER 7 Unsupervised learning for text data

 Let us understand this approach with an example. Let’s say that we have two sen-

tences: “It is raining heavily” and “We should eat fruits.” To represent these two sen-

tences, we calculate the frequency of each of the words in these sentences, as shown in

figure 7.5.

Now if we assume that the words in these two sentences represent the entire vocabu-

lary, we can represent the first sentence as shown in figure 7.6. Note that the table

contains all the words, but the words that are not present in the sentence have

received a value of 0.

In this example, we examined how the BOW approach has been used to represent a

sentence as a vector. But the BOW approach has not considered the order of the

words or the context. It focuses only on the frequency of the word. Hence, it is a very

fast approach to represent the data and is computationally less expensive compared to

its peers. Since it is frequency based, it is commonly used for document classifications.

Words Freq

It 1

is 1

raining 1

heavily 1

Words Freq

We 1

should 1

eat 1

fruits 1

It is raining heavily We should eat fruits

Figure 7.5 The frequency of

each word has been calculated.

In this example, we have two

sentences.

Words Freq

eat 0

fruits 0

heavily 1

is 1

it 1

raining 1

should 0

we 0

It is raining heavily

Figure 7.6 We are assuming that in the vocabulary

only two sentences are present and the first

sentence will be represented as shown.

2137.10 Term frequency and inverse document frequency

 But, due to its pure frequency-based calculation and representation, solution accu-

racy using the BOW approach can take a hit. In language, the context of the word

plays a significant role. As we have seen earlier, apple is both a fruit as well as a well-

known brand and organization. That is why we have other advanced methods that

consider more parameters than frequency alone. One such method is TF-IDF, which

we will study next.

7.10 Term frequency and inverse document frequency

In the BOW approach, we give importance to the frequency of a word only. But the

words that have a higher frequency might not always offer meaningful information as

compared to words that are rare but carry more importance. For example, say we have

a collection of medical documents, and we wish to compare two words: “disease” and

“diabetes.” Since the corpus consists of medical documents, the word “disease” is

bound to be more frequent, while the word “diabetes” will be less frequent but more

important to identify the documents that deal with diabetes. The term frequency and

inverse document frequency (TF-IDF) approach allows us to resolve this problem and

extract information on the more important words.

 In TF-IDF, we consider the relative importance of the word. TF means term fre-

quency, and IDF means inverse document frequency. We can define TF-IDF in this way:

 TF is the count of a term in the entire document (for example, the count of the

word “a” in document “D”).

 IDF is the log of the ratio of total documents (N) in the entire corpus and the

number of documents (df) that contain the word “a.”

So the TF-IDF formula will give us the relative importance of a word in the entire cor-

pus. The mathematical formula is the multiplication of TF and IDF and is given by

equation 7.1:

(7.1)

where N is the total number of documents in the corpus, tfi,j is the frequency of the

word in the document, and dfi is the number of documents in the corpus that contain

that word.

Exercise 7.2

Answer these questions to check your understanding:

1 Explain tokenization in simple language as if you are explaining it to a person
who does not know NLP.

2 The bag of words approach uses the context of the words and not frequency
alone. True or False?

3 Lemmatization is a less rigorous approach than stemming. True or False?

214 CHAPTER 7 Unsupervised learning for text data

 The concept might sound complex. Let’s understand this with an example. Say we

have a collection of 1 million sports journals. These sports journals contain many arti-

cles of various lengths. We also assume that all the articles are in the English language

only. So, let’s say, in these documents, we want to calculate the TF-IDF value for the

words “ground” and “backhand.”

 Let’s assume we have a document of 100 words with the word “ground” appearing

five times and “backhand” only twice. So the TF for ground is 5/100 = 0.05, and for

backhand, it is 2/100 = 0.02.

 We understand that the word “ground” is quite a common word in sports, while

the word “backhand” will be used less often. Now we assume that “ground” appears in

100,000 documents out of 1 million documents while “backhand” appears only in 10.

So the IDF for “ground” is log (1,000,000/100,000) = log (10) = 1. For “backhand” it

will be log (1,000,000/10) = log (100,000) = 5.

 To get the final values for “ground,” we multiply TF and IDF = 0.05 × 1 = 0.05. To

get the final values for “backhand,” we multiply TF and IDF = 0.02 × 5 = 0.1.

 We can observe in this case that the relative importance of the word “backhand” is

more than the relative importance of the word “ground.” This is the advantage of TF-

IDF over the frequency-based BOW approach. But TF-IDF takes more time to com-

pute as compared to BOW, since all the TF and IDF have to be calculated. Neverthe-

less, TF-IDF offers a better and more mature solution as compared to the BOW

approach in such cases. So, in scenarios where the relative importance of a word is in

discussion, we can use TF-IDF. For example, if the task is to shortlist medical docu-

ments on cardiology, the importance of the word “angiogram” will be higher as it is

much more related to cardiology.

 We have so far covered BOW and the TF-IDF approach. But in neither of these

approaches did we take the sequence of the words into consideration, which is cov-

ered in language models. We cover language models next.

7.11 Language models

Language models assign probabilities to the sequence of words. N-grams are the sim-

plest in language models. We know that to analyze the text data, they must be con-

verted to feature vectors. N-gram models create the feature vectors so that text can be

represented in a format that can be analyzed further.

 N-gram is a probabilistic language model. In an n-gram model, we calculate the

probability of the N th word given the sequence of (N – 1) words. To be more spe-

cific, an n-gram model will predict the next word xi based on the words xi –(n–1),

xi –(n–2)…xi –1. If we wish to use the probability terms, we can represent them as the

conditional probability of xi given the previous words, which can be represented as

P(xi | xi –(n–1), xi –(n–2)…xi –1). The probability is calculated by using the relative fre-

quency of the sequence occurring in the text corpus.

NOTE If the items are words, n-grams may be referred to as shingles.

2157.11 Language models

Let’s study this using an example. We will take a sentence and then break down the

meaning by using words in the sentence. Consider we have the sentence “It is raining

heavily.” We show the respective representations of this sentence by using different val-

ues of n in figure 7.6. You should note how the sequence of words and their respective

combinations are getting changed for different values of n. If we wish to use n = 1 or a

single word to make a prediction, the representation will be as shown in figure 7.7.

Note that each word is used separately here. They are referred to as unigrams.

If we wish to use n = 2, the number of words used will become two. They are referred

to as bigrams. If we use n = 3, the number of words becomes three, and they are

referred to as trigrams, and so on.

 Hence, if we have a unigram, it is a sequence of one word; for two words, it is a

bigram; for three words, it is a trigram; and so on. So, a trigram model will approxi-

mate the probability of a word given all the previous words by using the conditional

probability of only the preceding two words, whereas a bigram will do the same by

considering only the preceding word. This is a valid assumption, indeed, that the

probability of a word will depend only on the preceding word and is referred to as the

Markov assumption. Generally, n > 1 is considered to be much more informative than

unigrams. But obviously, the computation time will increase too.

 The n-gram approach is very sensitive to the choice of n . It also depends signifi-

cantly on the training corpus that has been used, which makes the probabilities heav-

ily dependent on the training corpus. So, if an unknown word is encountered, it will

be difficult for the model to work on that new word.

 Next we create a Python example. We will show a few examples of text cleaning

using Python.

It is raining heavily

It

is

raining

heavily

is raining

raining heavily

It is raining

is raining heavily

n=1 n=2 n=3

It is

Figure 7.7 Unigrams, bigrams,

and trigrams can be used to

represent the same sentence.

The concept can be extended to

n-grams too.

216 CHAPTER 7 Unsupervised learning for text data

7.12 Text cleaning using Python

There are a few libraries you may need to install. We will show a few small code snip-

pets. You are advised to use them as per the examples. We are also including the

respective screenshots of the code snippets and their results:

 Code 1: Remove the blank spaces in the text. Import the library re; it is called the

Regular Expression (Regex) expression. The text is “It is raining outside” with a lot of

blank spaces in between (see figure 7.8):

import re
doc = "It is raining outside"
new_doc = re.sub("\s+"," ", doc)
print(new_doc)

Code 2: Now we will remove the punctuation in the text data (see figure 7.9):

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
re.sub("[^-9A-Za-z]", "" , text_d)

Figure 7.9 Removing the punctuation

Code 3: Here is one more method to remove the punctuation (see figure 7.10):

import string
text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
cleaned_text = "".join([i for i in text_d if i not in string.punctuation])
cleaned_text

Figure 7.10 An alternative way to remove punctuation

Figure 7.8 Removing the

blank spaces

2177.12 Text cleaning using Python

Code 4: We will now remove the punctuation as well as convert the text to lowercase

(see figure 7.11):

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
cleaned_text = "".join([i.lower() for i in text_d if i not in
string.punctuation])
cleaned_text

Figure 7.11 Converting the text to lowercase

Code 5: Tokenization is done here using the standard nltk library (see figure 7.12):

import nltk
text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
nltk.tokenize.word_tokenize(text_d)

Figure 7.12 Tokenization

Note that in the output of the code, we have all the words, including the punctuation

marks, as different tokens. If you wish to exclude the punctuation, you can clean the

punctuation marks using the code snippets shared earlier.

218 CHAPTER 7 Unsupervised learning for text data

 Code 6: Next comes the stop words. We will remove the stop words using the nltk

library. After that, we tokenize the words (see figure 7.13):

stopwords = nltk.corpus.stopwords.words('english')
text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
text_new = "".join([i for i in text_d if i not in string.punctuation])
print(text_new)
words = nltk.tokenize.word_tokenize(text_new)
print(words)
words_new = [i for i in words if i not in stopwords]
print(words_new)

Figure 7.13 Removing stop words and tokenizing words

Code 7: We will now perform stemming on a text example. We use nltk library for it.

The words are first tokenized, and then we apply stemming (see figure 7.14):

import nltk
from nltk.stem import PorterStemmer
stem = PorterStemmer()
text = "eats eating studies study"
tokenization = nltk.word_tokenize(text)
for word in tokenization:
 print("Stem for {} is {}".format(word, stem.stem(word)))

Figure 7.14 Tokenizing and then stemming the words

2197.13 Word embeddings

Code 8: We now perform lemmatization on a text example. We use the nltk library

for it. The words are first tokenized, and then we apply lemmatization (see figure

7.15):

import nltk
from nltk.stem import WordNetLemmatizer
wordnet_lemmatizer = WordNetLemmatizer()
text = "eats eating studies study"
tokenization = nltk.word_tokenize(text)
for word in tokenization:
 print("Lemma for {} is {}".format(word,

wordnet_lemmatizer.lemmatize(word)))

Figure 7.15 Tokenizing and then lemmatizing the words

Observe and compare the difference between the two outputs of stemming and lem-

matization. For “studies” and “studying,” stemming generated the output as “studi”

while lemmatization generated the correct output as “study.”

 We have covered BOW, TF-IDF, and n-gram approaches so far. But in all these tech-

niques, the relationship between words has been neglected. This relationship is used

in word embeddings, our next topic.

7.13 Word embeddings

A word is characterized by the company it keeps.

—John Rupert Firth

So far we have studied several approaches, but all the techniques ignore the contex-

tual relationship between words. Let’s take a closer look using an example.

 Imagine we have 100,000 words in our vocabulary, starting from “aa” (the basaltic

lava) to “zoom.” Now, if we perform one-hot encoding, all these words can be repre-

sented in a vector form. Each word will have a unique vector. For example, if the posi-

tion of the word “king” is 21000, the vector will have a shape like the following vector,

which has 1 at the 21,000th position and the rest of the values as 0:

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0…………………1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

220 CHAPTER 7 Unsupervised learning for text data

 There are a few glaring problems with this approach:

 The number of dimensions is very high, and it is complex to compute.

 The data is very sparse in nature.

 If n new words have to be entered, the vocabulary increases by n, and hence

each vector dimensionality increases by n .

 This approach ignores the relationship between words. We know that “ruler,”

“king,” and “monarch” are sometimes used interchangeably. In the one-hot-

encoding approach, any such relationships are ignored.

If we wish to perform language translation, or generate a chat-bot, we need to pass

such knowledge to the machine learning solution. Word embeddings provide a solu-

tion to the problem. They convert the high-dimensional word features into lower

dimensions while maintaining the contextual relationship. Word embeddings allow us

to create much more generalized models. We can understand the meaning by looking

at an example.

NOTE In an LLM-enabled solution, you might not need to do a lot of these
steps.

In the example shown in figure 7.16, the relation of “man” to “woman” is similar to

“king” to “queen”; “good” to “nice” is similar to “bad” to “awful”; or the relationship of

“UK” to “London” is similar to “Japan” to “Tokyo.”

Figure 7.16 Word embeddings can be used to represent the relationships

between words. For example, there is a relation from “men” to “women” that is

similar to “king” to “queen” as both “men-women” and “king-queen” represent

the male-female gender relationship.

In simple terms, using word embeddings, we can represent the words that have simi-

lar meanings. Word embeddings can be thought of as a class of techniques where we

represent each of the individual words in a predefined vector space. Each of the

words in the corpus is mapped to one vector. The distributed representation is under-

stood based on the word’s usage. Hence, words that can be used similarly have similar

Men

Women

King

Queen

Good

Nice

Bad

Awful

2217.14 Word2Vec and GloVe

representations. This allows the solution to capture the underlying meaning of the

words and their relationships. Hence, the meaning of the word plays a significant

role. This representation is more intelligent as compared to the BOW approach

where each word is treated differently, irrespective of its usage. Also, the number of

dimensions is fewer as compared to one-hot encoding. Each word is represented by

10s or 100s of dimensions, which is significantly less than the one-hot encoding

approach where 1000s of dimensions are used for representation.

 We cover the two most popular techniques—Word2Vec and global vectors for word

representation (GloVe)—in the next section. The mathematical foundation for

Word2Vec and GloVe are beyond the scope of this book. We provide an understand-

ing of the working mechanism of the solutions and then develop Python code using

Word2Vec and GloVe. This section is more technically involved, so if you are inter-

ested only in the application of the solutions, you can skip the next section.

7.14 Word2Vec and GloVe

Word2Vec was first published in 2013. It was developed by Tomas Mikolov and others

at Google. We share the link to the paper at the end of the chapter. You are advised to

study the paper thoroughly if you wish to learn about the more technical elements in

detail.

 Word2Vec is a group of models used to produce word embeddings. The input is a

large corpus of text. The output is a vector space with a very large number of dimen-

sions. In this output, each of the words in the corpus is assigned a unique and corre-

sponding vector. The most important point is that the words that have a similar or

common context in the corpus are located nearby in the vector space produced.

 In Word2Vec, the researchers introduced two different learning models—the con-

tinuous bag of words (CBOW) and the continuous skip-gram model:

 In CBOW, the model makes a prediction of the current word from a window of

surrounding context words. So the CBOW model predicts a target word based

on the context of the surrounding words in the text. Recall that in the BOW

approach, the order of the words does not play any part. In contrast, in CBOW,

the order of the words is significant.

 The continuous skip-gram model uses the current word to predict the sur-

rounding window of context words. While doing so, it allocates more weight to

the neighboring words as compared to the distant words.

GloVe is an unsupervised learning algorithm for generating vector representation for

words. It was developed by Pennington and others at Stanford and launched in 2014.

It is a combination of two techniques: matrix factorization techniques and local

context-based learning used in Word2Vec. GloVe can be used to find relationships like

zip codes and cities, synonyms, etc. It generates a single set of vectors for words with

the same morphological structure.

 Both Word2Vec and GloVe learn and understand vector representation of their

words from the co-occurrence information. Co-occurrence means how frequently the

222 CHAPTER 7 Unsupervised learning for text data

words appear together in a large corpus. The prime difference is that Word2Vec is a

prediction-based model, while GloVe is a frequency-based model. Word2Vec predicts

the context given a word while GloVe learns the context by creating a co-occurrence

matrix on how frequently a word appears in a given context.

We will now move to the case study and Python implementation.

7.15 Sentiment analysis case study with Python
implementation

So far, we have discussed a lot of concepts on NLP and text data. In this section, we

first explore a business case and then develop a Python solution based on it. Here we

are working on sentiment analysis.

 Product reviews are a rich source of information—both for customers and organi-

zations. Whenever we wish to buy any new product or service, we tend to look at the

reviews by fellow customers. You might have reviewed products and services yourself.

These reviews are available at Amazon and on blogs, surveys, etc.

 Let’s consider a case. A telecom operator receives complaints from its customers,

reviews about the service, and comments about the overall experience. The streams

can be product quality, pricing, onboarding experience, ease of registration, payment

process, general reviews, customer service, etc. We want to determine the general con-

text of the review—whether it is positive, negative, or neutral. The reviews include the

number of stars allocated, actual text reviews, pros and cons about the product/ser-

vice, attributes, etc. However, there are a few business problems—for instance,

 Sometimes the number of stars received by a product/service is very high, while

the actual reviews are quite negative.

 The organizations and the product owners need to know which features are

appreciated by the customers and which features are disliked by the customers.

The team can then work on improving the features that are disliked.

 There is a need to gauge and keep an eye on the competition! The organiza-

tions need to know the attributes of the popular products of their competitors.

 The product owners want to better plan for the upcoming features they wish to

release in the future.

So the business teams will be able to answer these important questions:

 What are our customers’ satisfaction levels for the products and services?

 What are the major pain points and dissatisfactions of the customers?

Exercise 7.3

Answer these questions to check your understanding:

1 BOW is more rigorous than the TF-IDF approach. True or False?

2 Differentiate between Word2Vec and GloVe.

2237.15 Sentiment analysis case study with Python implementation

 What drives the customers’ engagement?

 Which services are complex and time-consuming, and which are the most liked

services/products?

This business use case will drive the following business benefits:

 The products and services that are most satisfactory and are the most liked

should be continued.

 The ones that are not liked and are receiving a negative score should be

improved and challenges mitigated.

 The respective teams, like finance, operations, complaints, CRM, etc., can be

notified, and they can work individually to improve the customer experience.

 The precise reasons for liking or disliking the services will be useful for the

respective teams to work in the right direction.

 Overall, it will provide a benchmark to measure the Net Promoter Score for the

customer base. The business can strive to enhance the overall customer

experience.

We might want to represent these findings by means of a dashboard. This dashboard

will be refreshed on a regular cycle, like monthly or quarterly.

 To solve this business problem, the teams can collect relevant data from websites,

surveys, Amazon, blogs, etc. Then an analysis can be done on that dataset. It is rela-

tively easy to analyze the structured data. In this example, we work on text data.

 The Python Jupyter notebook is pushed to the GitHub location. You are advised to

use the Jupyter notebook from the GitHub location as it contains more steps. The

steps are as follows:

1 Import all the libraries:

Loading all the required libraries here
from lxml import html
import requests
import pandas as pd
from nltk.corpus import stopwords
from textblob import TextBlob
import matplotlib.pyplot as plt
import sys
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import sklearn
import scikitplot as skplt
import nltk
#to ignore warnings
import warnings
warnings.filterwarnings("ignore")
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')

224 CHAPTER 7 Unsupervised learning for text data

2 Define the tags. These tags are used to get the attributes of the product from

the reviews:

xpath_reviews = '//div[@data-hook="review"]'
reviews = parser.xpath(xpath_reviews)
xpath_rating = './/i[@data-hook="review-star-rating"]//text()'
xpath_title = './/a[@data-hook="review-title"]//text()'
xpath_author = './/a[@data-hook="review-author"]//text()'
xpath_date = './/span[@data-hook="review-date"]//text()'
xpath_body = './/span[@data-hook="review-body"]//text()'
xpath_helpful = './/span[@data-hook="helpful-vote-statement"]//text()'

3 Make everything ready to extract the data. We create a dataframe to store the

customer reviews. Then we iterate through all the reviews and extract the

information:

Create a dataframe here.

reviews_df = pd.DataFrame()
for review in reviews:
 rating = review.xpath(xpath_rating)
 title = review.xpath(xpath_title)
 author = review.xpath(xpath_author)
 date = review.xpath(xpath_date)
 body = review.xpath(xpath_body)
 helpful = review.xpath(xpath_helpful)

 review_dict = {'rating': rating,
 'title': title,
 'author': author,
 'date': date,
 'body': body,
 'helpful': helpful}
 reviews_df = reviews_df.append(review_dict, ignore_index=True)
all_reviews = pd.DataFrame()

4 Iterate through the reviews and then fill in the details:

Fill the values of the reviews here.

for i in range(1,90):
 amazon_url = 'https://www.amazon.co.uk/Hive-Heating-Thermostat-

Professional-Installation/product-reviews/B011B3J6KY/
ref=cm_cr_othr_d_show_all?ie=UTF8&reviewerType=all_revie

ws&pageNumber='+str(i)
 headers = {'User-Agent': user_agent}
 page = requests.get(amazon_url, headers = headers)
 parser = html.fromstring(page.content)
 xpath_reviews = '//div[@data-hook="review"]'
 reviews = parser.xpath(xpath_reviews)
 reviews_df = pd.DataFrame()
 xpath_rating = './/i[@data-hook="review-star-rating"]//text()'
 xpath_title = './/a[@data-hook="review-title"]//text()'
 xpath_author = './/a[@data-hook="review-author"]//text()'

2257.15 Sentiment analysis case study with Python implementation

 xpath_date = './/span[@data-hook="review-date"]//text()'
 xpath_body = './/span[@data-hook="review-body"]//text()'
 xpath_helpful = './/span[@data-hook="helpful-vote-statement"]//text()'
 #print(i)
 for review in reviews:
 rating = review.xpath(xpath_rating)
 title = review.xpath(xpath_title)
 author = review.xpath(xpath_author)
 date = review.xpath(xpath_date)
 body = review.xpath(xpath_body)
 helpful = review.xpath(xpath_helpful)

 review_dict = {'rating': rating,
 'title': title,
 'author': author,
 'date': date,
 'body': body,
 'helpful': helpful}
 reviews_df = reviews_df.append(review_dict, ignore_index=True)
 #print(reviews_df)
 all_reviews = all_reviews.append(reviews_df)

5 Have a look at the output we generated:

all_reviews.head()

6 Save the output to a path. You can give your own path:

out_folder = '/Users/Data/'
all_reviews.to_csv(out_folder + 'Reviews.csv')

7 Load the data and analyze it:

#Load the data now and analyse it
data_path = '/Users/vaibhavverdhan/Book/UnsupervisedLearningBookFinal/'
reviewDataCSV = 'Reviews.csv'
reviewData = (pd.read_csv(data_path+reviewDataCSV,index_col=0,))

8 Look at the basic information about the dataset:

reviewData.shape
reviewData.rating.unique()
reviewData.rating.value_counts()

9 Look at the distribution of the stars given in the reviews. This will allow us to

understand the reviews given by the customers:

labels = '5 Stars', '1 Star', '4 Stars', '3 Stars', '2 Stars'
sizes = [reviewData.rating.value_counts()[0],

reviewData.rating.value_counts()[1],reviewData.rating.value_counts(
)[2],rev

iewData.rating.value_counts()[3],reviewData.rating.value_counts()[4]]
colors = ['green', 'yellowgreen', 'coral', 'lightblue', 'grey']
explode = (0, 0, 0, 0, 0) # explode 1st slice

226 CHAPTER 7 Unsupervised learning for text data

Plot
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
 autopct='%1.1f%%', shadow=True, startangle=140)

plt.axis('equal')
plt.show()

10 Make the text lowercase, and then remove the stop words and the words that

have the highest frequency:

reviewData.body = reviewData.body.str.lower()
reviewData.body = reviewData.body.str.replace('[^\w\s]','')
stop = stopwords.words('english')
reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in
x.split() if x not in stop))
freq = list(freq.index)
reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in

x.split() if x not in freq))
freq = pd.Series(' '.join(reviewData.body).split()).value_counts()[-10:]
freq = list(freq.index)
reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in
x.split() if x not in freq))

11 Tokenize the data:

from nltk.tokenize import word_tokenize
tokens = word_tokenize(reviewData.iloc[1,1])
print(tokens)

12 Perform lemmatization:

from textblob import Word
reviewData.body = reviewData.body.apply(lambda x: "

".join([Word(word).lemmatize() for word in x.split()]))
reviewData.body.head()

13 Append all the reviews to the string:

sentimentString = reviewData.iloc[1,1]
append to this string
for i in range(2,len(reviewData)):
 sentimentString = sentimentString + reviewData.iloc[i,1]

14 Do the sentiment analysis. From textblob, we take the sentiment method. It

generates polarity and subjectivity for a sentiment. Sentiment polarity for an

element is the orientation of the sentiment in the expression; that is, it tells us if

the text expresses a negative, positive, or neutral sentiment in the text. It subjec-

tively measures and quantifies the amount of opinion and factual information

in the text. If the subjectivity is high, it means that the text contains more opin-

ion than facts:

the functions generates polarity and subjectivity here, subsetting the
polarity only here

2277.15 Sentiment analysis case study with Python implementation

allReviewsSentiment = reviewData.body[:900].apply(lambda x:
TextBlob(x).sentiment[0])
this contains boths subjectivity and polarity
allReviewsSentimentComplete = reviewData.body[:900].apply(lambda x:
TextBlob(x).sentiment)
allReviewsSentimentComplete.head()

15 Save the sentiment to a .csv file:

allReviewsSentiment.to_csv(out_folder + 'ReviewsSentiment.csv')

16 Allocate a meaning or a tag to the sentiment. We classify each of the scores from

extremely satisfied to extremely dissatisfied:

allReviewsSentimentDF = allReviewsSentiment.to_frame()
Create a list to store the data
grades = []

For each row in the column,
for row in allReviewsSentimentDF['body']:
 # if more than a value,
 if row >= 0.75:
 grades.append('Extremely Satisfied')
 elif (row >= 0.5) & (row < 0.75):
 grades.append('Satisfied')
 elif (row >= 0.2) & (row < 0.5):
 grades.append('Nice')
 elif (row >= -0.2) & (row < 0.2):
 grades.append('Neutral')
 elif (row > -0.5) & (row <= -0.2):
 grades.append('Bad')
 elif (row >= -0.75) & (row < -0.5):
 grades.append('Dis-satisfied')
 elif row < -0.75:
 grades.append('Extremely Dis-satisfied')
 else:
 # Append a failing grade
 grades.append('No Sentiment')

Create a column from the list
allReviewsSentimentDF['SentimentScore'] = grades
allReviewsSentimentDF.head()

17 Look at the sentiment scores and plot them too. Finally, we merge them with

the main dataset:

allReviewsSentimentDF.SentimentScore.value_counts()
allReviewsSentimentDF['SentimentScore'].value_counts().plot(kind='bar')
Merge the review data with Sentiment generated

reviewData['polarityScore'] = allReviewsSentimentDF['body']

Adds column
polarityScore

228 CHAPTER 7 Unsupervised learning for text data

In this case study, you not only scraped the reviews from the website but you also ana-

lyzed the dataset. If we compare the sentiments, we can see that the stars given to a

product do not represent a true picture.

 Figure 7.17 compares the actual stars and the output from sentiment analysis. We

can observe that 73% of customers have given five stars and 7% have given four stars,

while in the sentiment analysis most of the reviews have been classified as neutral. This

is the real power of sentiment analysis!

Figure 7.17 Compare the original distribution of number of stars on the left side and the real results from the

sentiment analysis on the right.

Sentiment analysis is quite an important use case. It is very useful for business and prod-

uct teams. The preceding code can be scaled to any such business problem at hand.

 We now move to the second case study on document classification using Python.

7.16 Text clustering using Python

Consider this: we have a bunch of text datasets or documents, but they all are mixed

up. We do not know which text belongs to which class. In this case, we will assume that

we have two types of text datasets: one that has all the data related to football and one

that is related to travel. We will develop a model that can segregate these two classes.

To do that, we follow these steps:

1 Import all the libraries:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

80

60

50

20

0

N
e

u
tr

a
l

N
ic

e

S
a

ti
s
fi
e

d

E
x
tr

e
m

e
ly

 s
a

ti
s
fi
e

d

B
a

d

D
is

s
a

ti
s
fi
e

d

5 stars

1 star
4 stars

3 stars

2 stars

1.2%
14.3%7.2%3.6%

73.7%

2297.16 Text clustering using Python

import numpy as np
import pandas as pd

2 Create a dummy dataset. This text data has a few sentences we have written our-

selves. There are two categories:

text = ["It is a good place to travel",
 "Football is a nice game", "Lets go for holidays and travel to
Egypt",
 "It is a goal, a great game.", "Enjoy your journey and forget
the rest", "The teams are ready for the same"]

3 Use TF-IDF to vectorize the data:

tfidf_vectorizer = TfidfVectorizer(stop_words='english')
X = tfidf_vectorizer.fit_transform(text)

4 Do the clustering:

k = 2
model = KMeans(n_clusters=k, init='k-means++', max_iter=10, n_init=2)
model.fit(X)

5 Represent the centroids and print the outputs (see figure 7.18):

centroids = model.cluster_centers_.argsort()[:, ::-1]
features = vectorizer.get_feature_names()

for i in range(k):
 print("Cluster %d:" % i),
 for ind in centroids[i, :10]:
 print("%s" % terms[ind])

Figure 7.18

Printed output

230 CHAPTER 7 Unsupervised learning for text data

You can extend this example to other datasets too. Get the datasets from the internet

and replicate the code in the preceding example.

 We have pushed the code to the GitHub location of the book. You are advised to

use it. It is really an important source to represent text data.

7.17 GenAI for text data

GenAI solutions are a new kind of unsupervised solution. You surely have heard about

ChatGPT and LLMs. They have revolutionized the world. GenAI for text data uses

machine learning models to create human-like text. It is trained on large-scale data

patterns and hence can generate a variety of content pieces—for example, essays,

technical reports, and summaries of a book—and can act like a human chat interface.

Even the complex translation of languages is made easy with GenAI.

 GenAI for text data involves the use of advanced algorithms, like transformers, to

generate coherent, contextually appropriate text. These algorithms are trained on

mammoth datasets. Imagine we feed tons of content present on the internet to the

algorithms. By learning patterns and relationships between the words and the sen-

tences, the grammar used, syntax, and semantics, they can create human-like

responses. These models, such as OpenAI’s GPT or Google’s BERT, are very powerful

for drafting emails with correct language and grammar, creating detailed reports, writ-

ing code modules in a language like Java/C++, and many other tasks. Using this

power, content creators, writers and copyrighters, brand managers and marketers,

and business owners can produce high-quality text in a much more scalable and effi-

cient manner.

 Despite its amazing potential, GenAI still has some areas in need of improvement.

Sometimes it generates inaccurate information, also known as hallucinations. Ensur-

ing that the output remains unbiased and ethical is another hurdle, as models can

inadvertently reflect societal biases present in the data they were trained on. AI-gener-

ated text is increasingly being used in customer service, automating responses while

still maintaining a personal tone. Researchers are also exploring its use in the health-

care and legal fields, where it can help with documentation and drafting. While

GenAI is revolutionizing the way text is produced, the need for human oversight

remains critical to ensure quality, accuracy, and fairness.

7.18 Concluding thoughts

Text data is one of the most useful datasets. A lot of intelligence is hidden in the texts:

logs, blogs, reviews, posts, tweets, complaints, comments, articles, and so on—the

sources of text data are many. Organizations are investing in setting up the infrastruc-

ture for accessing text data and storing it. Analyzing text data requires better process-

ing powers and better machines than our standard laptops. It requires special skill sets

and a deeper understanding of the concepts. NLP is an evolving field, and a lot of

research is underway. At the same time, we cannot ignore the importance of sound

business acumen and knowledge.

2317.19 Practical next steps and suggested readings

 Data analysis and machine learning are not easy. We have to understand a lot of

concepts around data cleaning, exploration, representation, and modeling. But ana-

lyzing unstructured data might be even more complex than analyzing structured data-

sets. We worked on an images dataset in the last chapter, and in the current chapter,

we worked on text data.

 Text data is one of the most difficult datasets to analyze. There are so many permu-

tations and combinations for text data. Cleaning the text data is a difficult and com-

plex task. In this chapter, we discussed a few important techniques to clean text data.

We also covered some methods to represent text data in vector forms. You are advised

to practice each of these methods and compare the performances by applying each of

the techniques. We also introduced the concept of GenAI for text data.

 With this, we come to the end of chapter 7. This also marks an end to part 2. In the

next part, the complexity increases. We will be studying even deeper concepts of unsu-

pervised learning algorithms.

7.19 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Get the datasets from the following link. You will find a lot of text datasets here.

You are advised to implement clustering and dimensionality reduction solutions:

– 50 Free Machine Learning Datasets: Natural Language Processing: https://

mng.bz/ZljO

 You will find a lot of useful datasets at Kaggle as well: https://www.kaggle.com/

datasets?search=text

 Go through the following research papers:

– Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation

of Word Representations in Vector Space. https://arxiv.org/pdf/

1301.3781.pdf

– Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global Vec-

tors for Word Representation. https://nlp.stanford.edu/pubs/glove.pdf

– Das, B., and Chakraborty, S. (2018). An Improved Text Sentiment Classifica-

tion Model Using TF-IDF and Next Word Negation. https://arxiv.org/pdf/

1806.06407.pdf

 Consider these widely quoted papers:

– Blum, A., and Mitchell, T. (1998). Combining labeled and unlabeled data

with co-training. https://dl.acm.org/doi/10.1145/279943.279962

– Knight, K. (2009). Bayesian Inference with Tears. https://mng.bz/RVp0

– Hofmann, T. (1999). Probabilistic latent semantic indexing. https://

dl.acm.org/doi/10.1145/312624.312649

– Hindle, D., and Rooth, M. (1993). Structural Ambiguity and Lexical Rela-

tions. https://aclanthology.org/J93-1005.pdf

https://mng.bz/ZljO
https://www.kaggle.com/datasets?search=text
https://www.kaggle.com/datasets?search=text
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1806.06407.pdf
https://arxiv.org/pdf/1806.06407.pdf
https://aclanthology.org/J93-1005.pdf
https://dl.acm.org/doi/10.1145/312624.312649
https://mng.bz/RVp0
https://dl.acm.org/doi/10.1145/279943.279962

232 CHAPTER 7 Unsupervised learning for text data

– Collins and Singer. (1999). Unsupervised Models for Named Entity Classifi-

cation. https://aclanthology.org/W99-0613.pdf

 See the comprehensive study on TF-IDF feature weighting: Das, M., Selvaku-

mar, K., and Alphonse, J. P. A. (2023). A Comparative Study on TF-IDF Feature

Weighting Method and its Analysis using Unstructured Dataset. https://

arxiv.org/abs/2308.04037

Summary

 Text data’s omnipresence in blogs, social media, surveys, and more, and its

capacity to express emotions, emphasizes the importance of this form of data.

 Applications of text analysis include sentiment analysis, document categoriza-

tion, language translation, spam filtering, and named-entity recognition.

 Challenges in text data include handling junk characters, multiple languages,

evolving language, synonyms, and context-based meanings.

 Data preprocessing and cleaning involves removing stop words and unwanted

characters and normalizing text through stemming and lemmatization.

 Within text representation techniques, one-hot encoding is basic but not scal-

able; advanced techniques consider frequency and context.

 Tokenization involves breaking down text into tokens and is fundamental for

creating analysis-ready datasets.

 The BOW approach is a fast, frequency-based method that ignores word order

and context.

 TF-IDF weighs words based on importance over mere frequency, offering more

insightful analysis than BOW.

 Language models and n-grams use word sequences for probabilistic predic-

tions, with variations like unigrams, bigrams, and trigrams.

 Python for text parsing illustrates cleaning and preprocessing text data using

Python libraries like nltk.

 Techniques like Word2Vec and GloVe maintain contextual relationships

between words for better semantic understanding.

 Word2Vec is prediction based, while GloVe is frequency based; both create com-

pact and meaningful word representations.

 LLMs have revolutionized the entire landscape for text datasets.

https://aclanthology.org/W99-0613.pdf
https://arxiv.org/abs/2308.04037
https://arxiv.org/abs/2308.04037

Part 3

Advanced concepts

Welcome to the final part of the book.

 You’ve completed the first two parts of the book: you’ve built programs,

solved case studies, and navigated the foundational challenges of unsupervised

learning solutions. But machine learning, like any other discipline, art, or sport,

has no finish line. It’s a constantly evolving field wherein constant upgradation is

required, and to truly be a master, you must adapt and improve, innovate and

learn, and push the boundaries of what you know.

 In this final part of the book, we’ll dive into the more nuanced aspects of

unsupervised learning. We will cover much more advanced topics that separate

good data scientists from great ones: deep learning, autoencoders, generative

AI, and patterns that scale across large applications. We will also cover the end-

to-end lifecycle of a machine learning project, including deployment and

maintenance.

 But don’t be fooled—this part isn’t about quick Python codes that you can

cut and paste. These advanced techniques are about developing a much more

sophisticated system that can be used for datasets like text, images, and videos.

It’s about making more bespoke solutions that are customizable as well as scal-

able. These solutions don’t just work today but will work tomorrow too.

 Are you ready to take your skills to the next level? Let’s dig deeper.

235

Deep learning:
The foundational concepts

The art of simplicity is a puzzle of complexity.

—Douglas Horton

Welcome to the third part of the book. So far, you have covered a lot of concepts

and case studies and Python code. From this chapter onward, the level of complex-

ity will be even higher.

 In the first two parts of the book, we covered various unsupervised learning

algorithms like clustering, dimensionality reduction, etc. We discussed both

This chapter covers

 Core building blocks of deep learning

 Supervised and unsupervised learning approaches

 Convolutional and recurrent neural networks

 The Boltzmann learning rule and deep belief

networks

 Python coding with TensorFlow and Keras

 Overview of deep learning libraries

236 CHAPTER 8 Deep learning: The foundational concepts

simpler and advanced algorithms. We also covered working on text data in the second

part of the book. Starting from this third part of the book, we will start our journey on

deep learning.

 Deep learning and neural networks have changed the world and the business

domains. You have probably heard about deep learning and neural networks. Their

implementations and sophistication result in better cancer detection, autonomous

driving cars, improved disaster management systems, better pollution control systems,

reduced fraud in transactions, and so on.

 In the third part of the book, we will explore unsupervised learning using deep

learning. We will study what deep learning is and the basics of neural networks, as well

as the layers in a neural network, activation functions, the process of deep learning,

and various libraries. Then we will move to autoencoders and generative adversarial

networks (GANs) and generative AI (GenAI). The topics are indeed complex and

sometimes quite mathematically heavy. We will use different kinds of datasets for work-

ing on the problems, but primarily the datasets will be unstructured in nature. As

always, Python will be used to generate the solutions. We also share a lot of external

resources to complement the concepts. Please note that these are advanced topics,

and a lot of research is still ongoing for these topics.

 We have divided the third part of the book into four chapters. This chapter covers

the foundational concepts of deep learning and neural networks. The next two chap-

ters focus on autoencoders, GAN and GenAI. The final chapter of the book talks

about the deployment of these models.

 In this chapter, we discuss the concepts of neural networks and deep learning. We

discuss what a neural network is, its activation functions, different optimization func-

tions, the neural network training process, etc. The concepts covered in this chapter

form the base of neural networks and deep learning and subsequent learning in the

next two chapters. Hence, it is vital that you are clear about these concepts. The best

external resources to learn these concepts in more detail are given at the end of the

chapter.

 Welcome to the eighth chapter, and all the very best!

8.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have

used so far. The codes and datasets used in this chapter have been checked in at the

same GitHub location. You will need to install a couple of Python libraries in this

chapter: tensorflow and keras.

8.1.1 Deep learning: What is it? What does it do?

Deep learning has gathered a lot of momentum in the past few years. Neural networks

are pushing the boundaries of machine learning solutions. Deep learning is machine

learning only. Deep learning is based on neural networks. It utilizes a similar con-

cept—that is, using historical data and understanding the attributes and the intelli-

gence gathered to find patterns or predict the future, albeit deep learning is more

complex than the algorithms we have covered so far.

2378.1 Technical toolkit

 Recall chapter 1, where we covered the concepts of structured and unstructured

datasets. Unstructured datasets include text, images, audio, video, etc. Figure 8.1

describes the major sources of text, images, audio, and video datasets.

While deep learning can be implemented for structured datasets too, it is mostly work-

ing wonders on unstructured datasets. One of the prime reasons is that the classical

machine learning algorithms are sometimes not that effective on unstructured data-

sets like that of images, text, audio, and video. A few of the path-breaking solutions

delivered by deep learning across various domains are as follows:

 The medical field and pharmaceuticals—Deep learning sees application in areas

such as the identification of bones and joint problems or in determining if

there are any clots in arteries or veins. In the pharmaceutical field, it expedites

clinical trials and helps to reach the target drug faster.

 The banking and financial sector—Deep learning-based algorithms are used to

detect potential fraud in transactions. Using image recognition-based algo-

rithms, we can also distinguish fake signatures on checks.

 The automobile sector—You have probably heard about autonomous driving (aka

self-driving) cars. Using deep learning, the algorithms can detect traffic signals,

pedestrians, other vehicles on the road, their respective distances, and so on.

 Retail—In the retail sector, using deep learning-based algorithms, humans can

improve customer targeting and develop advanced and customized marketing

tactics. The recommended models to provide next-best products to the custom-

ers have been improved using deep learning. We can get better returns on

investments and improve cross-sell and upsell strategies.

In addition, automatic speech recognition is possible with deep learning. Using

sophisticated neural networks, humans can create speech recognition algorithms.

These solutions are being used across Siri, Alexa, Translator, Baidu, etc.

 Image recognition is also advancing. Neural networks are improving image recog-

nition techniques. This can be done using convolutional neural networks, which are

improving computer vision. Use cases include the following:

 Deep learning is quite effective for differentiation between cancerous cells and

benign cells. Differentiation can be achieved by using the images of cancerous

cells and benign cells.

U
n

s
tr

u
c
tu

re
d

 d
a
ta

Text data

Images data

Audio data

Video data

Facebook reviews, tweets, customer
complaints, product reviews

Product images, objects

Call center recordings, radio ads

YouTube videos, product videos,
video ads, product shoots

Figure 8.1 Unstructured datasets

like text, audio, images, and video

can be analyzed using deep

learning. There are multiple sources

of such datasets.

238 CHAPTER 8 Deep learning: The foundational concepts

 An automated number plate reading system has been developed using neural

networks.

 Object detection methods and monitor sensing and tracking systems can be

developed using deep learning.

 In disaster management systems, deep learning can detect the presence of

humans in affected areas. Just imagine how, during rescue operations, human

lives can be saved using better detection.

GenAI is changing the world rapidly. Use cases include automating content creation,

such as writing articles, essays, and social media posts and generating images and vid-

eos. It improves customer service and customer experience by providing chatbots that

provide instant, personalized responses to the queries of the customers. It can be imple-

mented in any industry. In data-heavy industries, it creates ripples by summarizing com-

plex and long documents and generating insights from dashboards and reports. These

reports can be Power BI/Tableau dashboards, PowerPoints, or pdf files, for example. It

has also helped software developers in code generation and debugging and has

improved software development efficiency. The use cases are many, ranging from retail;

telecommunications; healthcare; R&D; banking, finance, and insurance, etc., in

improving sales, reducing costs, saving time, and improving accuracy.

 The use cases listed are certainly not exhaustive. Using deep learning, we can

improve natural language processing solutions used to measure customers’ senti-

ments, language translation, text classification, named-entity recognition, etc. Across

use cases in bioinformatics, the military, mobile advertising, technology, the supply

chain, and so on, deep learning is paving the path for the future.

8.2 Building blocks of a neural network

Artificial neural networks (ANNs) are said to be inspired by the way the human brain

works. The human brain is the best machine we currently have access to. When we see

a picture or a face or hear a tune, we associate a label or a name with it. That allows us

to train our brain and senses to recognize a picture or a face or a tune when we see/

hear it again. ANNs learn to perform similar tasks by learning or getting trained.

8.2.1 Neural networks for solutions

In deep learning, too, the concepts of supervised and unsupervised learning are appli-

cable. We cover both types of training of the network: supervised and unsupervised.

Exercise 8.1

Answer these questions to check your understanding:

1 What is the meaning of deep learning?

2 Neural networks cannot be used for unsupervised learning. True or False?

3 Explore more use cases for deep learning in nonconventional business
domains.

2398.2 Building blocks of a neural network

This will give you a complete picture. At the same time, to fully appreciate unsuper-

vised deep learning, you should be clear on the supervised deep learning process.

 Let’s understand the deep learning process by using an example. Consider this: we

wish to create a solution that can identify faces—a solution that can distinguish faces

and identify the person by allocating a name to the face. For training the model, we

will use a dataset that will have images of people’s faces and corresponding names.

The ANN will start with no prior understanding of the image’s dataset or the attri-

butes. During the process of training, it will learn the attributes and the identification

characteristics from the training data. These learned attributes are then used to distin-

guish between faces. At this moment, we are only covering the process at a high level;

we will cover this process in much more detail in subsequent sections. Figure 8.2

shows a representation of a neural network.

The process in a neural network is quite complex. We will first cover all the building

blocks of a neural network, like neurons, activation functions, weights, bias terms, etc.,

and then move on to the process followed in a neural network. Let’s start with the pro-

tagonist: a neuron.

8.2.2 Artificial neurons and perceptrons

The human brain contains billions of neurons. The neurons are interconnected cells

in our brains. These neurons receive signals, process them, and generate results. Arti-

ficial neurons are based on biological neurons only and can be considered simplified

computational models of biological neurons.

 In 1943, researchers Warren McCullock and Walter Pitts proposed the concept of a

simplified brain cell called the McCullock-Pitts neuron. It can be thought of as a sim-

ple logic gate with binary outputs.

 The working methodology for artificial neurons is similar to that of biological neu-

rons, albeit artificial neurons are far simpler than biological neurons. A perceptron is

a mathematical model of a biological neuron. In the actual biological neurons,

Figure 8.2 A typical neural network

with neurons and various layers

240 CHAPTER 8 Deep learning: The foundational concepts

dendrites receive electrical signals from the axons of other neurons. In a perceptron,

these electrical signals are represented as numerical values.

 The artificial neuron receives inputs from the previous neurons or can receive the

input data. It then processes that input information and shares an output. The input

can be the raw data or processed information from a preceding neuron. The neuron

then combines the input with its own internal state, weighs them separately, and

passes the output received through a nonlinear function to generate output. These

nonlinear functions are also called activation functions (we will cover them later). You

can think of an activation function as a mathematical function. A neuron can be rep-

resented as shown in figure 8.3.

In simpler terms, a neuron can be termed as a mathematical function that computes

the weighted average of its input datasets; then this sum is passed through activation

functions. The output of the neuron can then be the input to the next neuron, which

will again process the input received. Let’s go a bit deeper.

 In a perceptron, each input value is multiplied by a factor called the weight. Biolog-

ical neurons fire once the total strength of the input signals exceeds a certain thresh-

old. A similar format is followed in a perceptron. In a perceptron, a weighted sum of

the inputs is calculated to get the total strength of the input data, and then an activa-

tion function is applied to each of the outputs. Each output can then be fed to the

next layer of perceptron.

 Let’s assume that there are two input values, a and b, for a perceptron X, which for

the sake of simplicity has only one output. Let the respective weights for a and b be P

and Q. So the weighted sum can be calculated as P * X + Q * b . The perceptron will

fire or will have a nonzero output only if the weighted sum exceeds a certain thresh-

old. Let’s call the threshold C. So, we can say the following:

The output of X will be 0 if P * X + Q * y <= C.

The output of X will be 1 if P * S + Q * y > C.

If we generalize this understanding, we can represent it as follows. Representing a per-

ceptron as a function maps input x as the function:

input

input

input

output

output

output

Mathematical

function
Figure 8.3 A neuron gets the

inputs, processes them using

mathematical functions, and then

generates the output.

2418.2 Building blocks of a neural network

where x is the vector of input values, w represents the vector of weights, and b is the

bias term. We explain the bias and the weight terms next.

 Recall the linear equation: y = mx + c where m is the slope of the straight line and c

is the constant term. Both bias and weight can be defined using the same linear

equation.

 The role of weight is similar to the slope of the line in a linear equation. It defines

the change in the value of f(x) by a unit change in the value of x.

 The role of the bias is similar to the role of a constant in a linear function. In case

there is no bias, the input to the activation function is x multiplied by the weight.

NOTE Weights and bias terms are the parameters that get trained in a
network.

The output of the function will depend on the activation function used. We will cover

various types of activation functions in the next section after we have covered different

layers in a network.

8.2.3 Different layers in a network

A simple and effective way of organizing neurons is the following. Rather than allow-

ing arbitrary neurons connected with arbitrary others, neurons are organized in lay-

ers. A neuron in a layer has all its inputs coming only from the previous layer and all

its output going only to the next. There are no other connections, for example,

between neurons of the same layer or between neurons in neurons belonging to dis-

tant layers (with a small exception for specialized cases, which is beyond the scope of

this book).

 We know that information flows through a neural network. That information is

processed and passed on from one layer to another layer in a network. There are

three layers in a neural network, as shown in figure 8.4.

Input
layer Hidden

layer 1
Hidden
layer 2

Output
layer

Figure 8.4 A typical neural network

with neurons and input, hidden, and

output layers

242 CHAPTER 8 Deep learning: The foundational concepts

The neural network shown in figure 8.4 has three input units and two hidden layers

with four neurons each and one final output layer:

 Input layer—As the name signifies, this receives the input data and shares it with

the hidden layers.

 Hidden layer—This is the heart and soul of the network. The number of hidden

layers depends on the problem at hand; the number of layers can range from a

few to hundreds. All the processing, feature extraction, and learning of the

attributes is done in these layers. In the hidden layers, all the input raw data is

broken into attributes and features. This learning is useful for decision-making

at a later stage.

 Output layer—This is the decision layer and final piece in a network. It accepts

the outputs from the preceding hidden layers and then makes a prediction.

For example, the input training data may have raw images or processed images. These

images will be fed to the input layer. The data then travels to the hidden layers where

all the calculations are done. These calculations are done by neurons in each layer.

The output is the task that needs to be accomplished—for example, identification of

an object or classification of an image, etc.

 The ANN consists of various connections. Each of the connections aims to receive

the input and provide the output to the next neuron. This output to the next neuron

will serve as an input to it. Also, as discussed earlier, each connection is assigned a

weight, which is representative of its respective importance. It is important to note

that a neuron can have multiple input and output connections, which means it can

receive inputs and deliver multiple outputs.

So what is the role of a layer? A layer receives inputs, processes them, and passes the

output to the next layer. Technically, it is imperative that the transformation imple-

mented by a layer is parameterized by its weights, which are also referred to as param-

eters of a layer. In simple terms, to ensure a neural network is “trained” to a specific

task, something must be changed in the network. It turns out that changing the archi-

tecture of the network (i.e., how neurons are connected) has only a small effect. On

the other hand, as we will see later in this chapter, changing the weights is the key to

the “learning” process.

 We now move to the very important topic of activation functions.

Exercise 8.2

Answer these questions to check your understanding:

1 The input data is fed to the hidden layers in a neural network. True or False?

2 A bias term is similar to the slope of a linear equation. True or False?

3 Find and explore the deepest neural network ever trained.

2438.2 Building blocks of a neural network

8.2.4 Activation functions

We have already mentioned activation functions. The primary role of an activation

function is to decide whether a neuron/perceptron should fire or not. These func-

tions play a central role in the training of the network at a later stage. They are some-

times referred to as transfer functions. It is also important to know why we need

nonlinear activation functions. If we use only linear activation functions, the output

will also be linear. At the same time, the derivative of a linear function will be constant.

Hence, there will not be much learning possible. Thus, we prefer to have nonlinear

activation functions. We study the most common activation functions next.

SIGMOID FUNCTION

A sigmoid is a bounded monotonic mathematical function. It always increases its out-

put value when the input values increase. Its output value is always between –1 and 1.

 A sigmoid is a differentiable function with an S-shaped curve, and its first deriva-

tive function is bell-shaped. It has a nonnegative derivative function and is defined for

all real input values. The sigmoid function is used if the output value of a neuron is

between 0 and 1.

 Mathematically, a sigmoid function can be represented by equation 8.1:

(8.1)

Figure 8.5 shows a graph of a sigmoid function. The sigmoid function finds its applica-

tions in complex learning systems. It is usually used for binary classification and in the

final output layer of the network.

TANH FUNCTION

In mathematics, the tangent hyperbolic (TANH) function is a differentiable hyper-

bolic function. It is a smooth function, and its input values are in the range of –1

to +1.

Figure 8.5 A sigmoid function.

Note the shape of the function

and the min/max values.

244 CHAPTER 8 Deep learning: The foundational concepts

 A TANH function is written as equation 8.2:

(8.2)

A graphical representation of TANH is shown in figure 8.6. It is a scaled version of the

sigmoid function, and hence a TANH function can be derived from a sigmoid func-

tion and vice versa.

Figure 8.6 A TAHN function, which is a scaled version of a sigmoid function

A TANH function is generally used in the hidden layers. It makes the mean closer to

zero, which makes the training easier for the next layer in the network. This is also

referred to as centering the data.

RECTIFIED LINEAR UNIT

A rectified linear unit (ReLU) is an activation function that defines the positives of an

argument. Equation 8.3 shows the ReLU function. Note that the value is 0 even for

the negative values, and from 0 the value starts to incline.

F(x) = max (0, x) (8.3)

It will give the output as x if positive, else 0.

 The ReLU is a simple function and hence less expensive to compute and much

faster. It is unbounded and not centered at zero. It can be differentiated at all places

except zero. Since the ReLU function is less complex, it is computationally less expen-

sive and, hence, is widely used in the hidden layers to train the networks faster. Figure

8.7 is a graphical representation of a ReLU function.

2458.2 Building blocks of a neural network

SOFTMAX FUNCTION

The softmax function is used in the final layer of the neural network to generate the

output from the network. It is an activation function that is useful for multiclass classi-

fication problems and forces the neural network to output the sum of 1.

 As an example, say the distinct classes for an image are cars, bikes, or trucks. The

softmax function will generate three probabilities for each category. The category that

has received the highest probability will be the predicted category.

 There are other activation functions too, like ELU, PeLU, etc., which are beyond

the scope of this book. We provide a summary of various activation functions at the

end of this chapter.

 We next cover hyperparameters, which are the control levers we have while the

network is trained.

8.2.5 Hyperparameters

During training a network, the algorithm is constantly learning the attributes of the

raw input data. At the same time, the network cannot learn everything itself; there are

a few parameters for which initial settings must be provided. These are the variables

that determine the structure of the neural network and the respective variables that

are useful to train the network.

 A few examples of hyperparameters are the number of hidden layers in a network,

the number of neurons in each layer, the activation functions used in layers, weight

initialization, etc. We have to pick the best values of the hyperparameters. To do so, we

select some reasonable values for the hyperparameters, train the network, measure

the performance of the network, tweak the hyperparameters and retrain the network,

reevaluate and retweak, and so on.

NOTE Hyperparameters are controlled by us, as we input hyperparameters to
improve the performance.

Figure 8.7 A ReLU function. It is one

of the favored activation functions in

the hidden layers of a neural network.

A ReLU is simple to use and less

expensive to train.

246 CHAPTER 8 Deep learning: The foundational concepts

We now move to the next important component in a neural network: optimization

functions.

8.2.6 Optimization functions

In deep learning, optimizers play a critical role. They minimize the loss function by

adjusting the model parameters, which are weights and biases. The optimizers facili-

tate faster convergence and improve the overall performance of the network. Some of

the most commonly used optimization functions are discussed next.

BATCH GRADIENT DESCENT, STOCHASTIC GRADIENT DESCENT, AND MINI-BATCH STOCHASTIC

GRADIENT DESCENT

In any prediction-based solution, we want to predict as best as we can; or, in other

words, we want to reduce the error as much as possible. Error is the difference

between the actual values and the predicted values. The purpose of a machine learn-

ing solution is to find the optimum value for our functions. We want to decrease the

error or maximize the accuracy. Gradient descent can help to achieve this purpose.

 The batch gradient descent technique is an optimization technique used to find

the global minima of a function. We proceed in the direction of the steepest descent

iteratively, which is defined by the negative of the gradient.

 But batch gradient descent can be slow to run on very large datasets or datasets

with a very high number of dimensions. This is due to the fact that one iteration of the

gradient descent algorithm predicts for every instance in the training dataset. Hence,

it is obvious that it will take a lot of time if we have thousands of records. For such a sit-

uation, we have stochastic gradient descent (SGD).

 In SGD, rather than at the end of the batch of the data, the coefficients are

updated for each training instance, and hence it takes less time.

 Figure 8.8 shows the way gradient descent works. Notice how we can progress

downward toward the global minimum.

Mini-batch gradient descent batches gradient descent and SGD by using small subsets

of data. They are called mini-batches. In this fashion, it can balance both speed and

Figure 8.8 The concept of gradient

descent. It is the mechanism to

minimize the loss function.

2478.2 Building blocks of a neural network

accuracy. At the same time, it adds a hyperparameter, and we have to carefully tune

the batch size. Generally, it is kept in the power of 2 (32, 64, 128, 256, etc.).

ADAPTIVE OPTIMIZATION ALGORITHMS

Researchers have observed that there is a need for optimization algorithms for more

complex tasks like image, text, video, or audio analysis. Hence, adaptive optimization

solutions like momentum, Nesterov accelerated gradient (NAG), Adagrad, etc., have

been developed. We provide a brief summary of these solutions:

 Momentum—This optimizer adds a fraction of the previous gradient to the cur-

rent gradient. The idea is to give more weight to the most recent update as

compared to the previous updates. It accelerates the convergence and achieves

better accuracy

and hence the weights are updated by  =  – V(t).

Generally, the value of the momentum term () is set to 0.9. With momen-

tum, the convergence is faster, but at the same time, we must compute one

more variable for each update.

 NAG—This is an improvement over momentum. In momentum, if the value

becomes too large, the optimizer might miss the local minima. Hence, NAG was

developed. It is a look-ahead method wherein the weights are modified to

determine the future location.

Next, we discuss the most widely used optimization algorithms in the industry.

LEARNING AND LEARNING RATE

For a network, we take various steps to improve the performance of the solution:

learning rate is one of them. The learning rate will define the size of the corrective

steps that a model takes to reduce the errors. Learning rate defines the amount by

which we should adjust the values of weights of the network with respect to the loss

gradients (more on this process later). If we have a higher learning rate, the accuracy

will be lower. If we have a very low learning rate, the training time will increase.

We have examined the main concepts of deep learning. Now let us study how a neural

network works. You will learn how the various layers interact with each other and how

information is passed from one layer to another.

Exercise 8.3

Answer these questions to check your understanding:

1 Compare and contrast the sigmoid and TANH functions.

2 ReLU is generally used in the output layer of the network. True or False?

3 Gradient descent is an optimization technique. True or False?

248 CHAPTER 8 Deep learning: The foundational concepts

8.3 How does deep learning work in a supervised manner?

We have covered the major components of a neural network. It is the time for all the

pieces to come together and orchestrate the entire learning process. The training of

a neural network is quite a complex process and can be examined in a step-by-step

fashion.

 You might be wondering what is meant by “learning” of a neural network. Learn-

ing is a process to find the best and most optimized values for weights and bias for all

the layers of the network so that we can achieve the best accuracy. As deep neural net-

works can have practically infinite possibilities for weights and bias terms, we have to

find the optimum value for all the parameters. This seems like a herculean task con-

sidering that changing one value affects the other values, and indeed, it is a process

where the various parameters of the networks are changing.

 Recall in the first chapter we covered the basics of supervised learning. We will

refresh that understanding here. The reason is to ensure that you are fully able to

appreciate the process of training the neural network.

8.3.1 Supervised learning algorithms

Supervised learning algorithms have a “guidance” or “supervision” to direct toward

the business goal of making predictions for the future. Formally put, supervised mod-

els are statistical models that use both the input data and the desired output to predict

the future. The output is the value we wish to predict and is referred to as the target

variable, and the data used to make that prediction is called the training data. The tar-

get variable is sometimes referred to as the label. The various attributes or variables

present in the data are called independent variables. Each of the historical data points or

training examples contain these independent variables and corresponding target vari-

ables. Supervised learning algorithms make a prediction for the unseen future data.

The accuracy of the solution depends on the training done and patterns learned from

the labeled historical data.

NOTE Most deep learning solutions are based on supervised learning. Unsu-
pervised deep learning is rapidly gaining traction, however, as unlabeled data-
sets are far more abundant than labeled ones.

Supervised learning problems are used in demand prediction, credit card fraud detec-

tion, customer churn prediction, premium estimation, etc. They are heavily used

across retail, telecom, banking and finance, aviation, insurance, and other fields.

 We have now refreshed the concepts of supervised learning. We now move on to

the first step in the training of the neural network: feed-forward propagation.

8.3.2 Step 1: Feed-forward propagation

Let us start the process that occurs in a neural network (see figure 8.9). This is the

basic skeleton of a network we have created to explain the process. Let’s say we have

2498.3 How does deep learning work in a supervised manner?

some input data points and the input data layer, which will consume the input data.

The information flows from the input layer to the data transformation layers (hidden

layers). In the hidden layers, the data is processed using the activation functions and

based on the weights and bias terms. Then a prediction is made on the dataset. This is

called feed-forward propagation, as during this process, the input variables are calculated

in a sequence from the input layer to the output layer.

For example, say we wish to create a solution that can identify the faces of people. In

this case, we will have the training data, which is different images of people’s faces

from various angles, and a target variable, which is the name of the person.

 This training dataset can be fed to the algorithm. The algorithm will then under-

stand the attributes of various faces or, in other words, learn the various attributes.

Based on the training done, the algorithm can then make a prediction on the faces.

The prediction will be a probability score if the face belongs to Mr. X. If the probabil-

ity is high enough, we can safely say that the face belongs to Mr. X.

8.3.3 Step 2: Adding the loss function

The output is generated in step 1. Now we have to gauge the accuracy of this network.

We want our network to have the best possible accuracy in identifying the faces. Using

the prediction made by the algorithm, we will control and improve the accuracy of the

network.

 Accuracy measurement in the network can be achieved by the loss function, also

called the objective function. The loss function compares the actual values and the pre-

dicted values. The loss function computes the difference score and hence is able to

measure how well the network has done and what the error rates are. Let’s update the

diagram we created in step 1 by adding a loss function and corresponding loss score,

used to measure the accuracy of the network, as shown in figure 8.10.

Input data

Data transformation

Data transformation

Weight updates

Weight updates

Prediction

Figure 8.9 The basic skeleton of a neural network

training process. We have the input layers and data

transformation layers.

250 CHAPTER 8 Deep learning: The foundational concepts

Figure 8.10 A loss function has been added to measure the accuracy.

8.3.4 Step 3: Calculating the error

We generated the predictions in step 1 of the network. In step 2, we compared the

output with the actual values to get the error in prediction. The objective of our solu-

tion is to minimize this error, which is the same as maximizing the accuracy.

 To constantly lower the error, the loss score (Predictions – Actual) is then used as

feedback to adjust the value of the weights. This task is done by the backpropagation

algorithm.

8.4 Backpropagation

In step 3 of the last section, we said we use an optimizer to constantly update the

weights to reduce the error. While the learning rate defines the size of the corrective

steps to reduce the error, backpropagation is used to adjust the connection weights.

These weights are updated backward based on the error. Following this, the errors are

recalculated, the gradient descent is calculated, and the respective weights are

adjusted. Hence, backpropagation is sometimes called the central algorithm in deep

learning.

 Backpropagation was originally suggested in the 1970s. Then, in 1986, David Rum-

elhartm, Geoffrey Hinton, and Ronald Williams’s paper received a lot of appreciation.

Nowadays, backpropagation is the backbone of deep learning solutions.

 Figure 8.11 shows the process for backpropagation, where the information flows

from the output layer back to the hidden layers. Note that the flow of information is

backward as compared to forward propagation, where the information flows from left

to right.

True value of

target variable

Loss function generating
the loss score

Input data

Data transformation

Data transformation

Weight updates

Weight updates

Prediction

2518.4 Backpropagation

First, we describe the process at a very high level. Remember that in step 1, at the start

of the training process, some random values were assigned to the weights. Using these

random values, an initial output is generated. Since this is the first attempt, the output

received can be quite different from the real values and the loss score is accordingly

very high. But this is going to improve. While training the neural network, the weights

(and biases) are adjusted a little in the correct direction, and subsequently, the loss

score decreases. We iterate this training loop many times, and it results in the opti-

mum weight values that minimize the loss function.

NOTE Backpropagation allows us to iteratively reduce the error during the
network training process.

The following section is mathematically heavy. If you are not keen to understand the

mathematics behind the process, you can skip it.

8.4.1 The mathematics behind backpropagation

When we train a neural network, we calculate a loss function. The loss function tells us

how different the predictions from the actual values are. Backpropagation calculates

the gradient of the loss function with respect to each of the weights. With this infor-

mation, each weight can be updated individually over iterations, which reduces the

loss gradually.

 In backpropagation, the gradient is calculated backward—that is, from the last

layer of the network through the hidden layers to the very first layer. The gradients of

all the layers are combined using the calculus chain rule to get the gradient of any

particular layer.

 We go into more details of the process next. First, let’s denote a few mathematical

symbols:

Input
layer Hidden

layer 1
Hidden
layer 2

Output
layer

Backpropagation

Backpropagation

Figure 8.11 Backpropagation

as a process: the information

flows from the final layers to the

initial layers

252 CHAPTER 8 Deep learning: The foundational concepts

 h(i)—output of the hidden layer i

 g (i)—activation function of hidden layer i

 w (i)—hidden weights matrix in the layer i

 b(i)—bias in layer i

 x—input vector

 N—total number of layers in the network

 W (i)
jk—weight of the network from node j in layer (i–1) to node k in layer i

 δA/δB—partial derivative of A with respect to B

During the training of the network, the input x is fed to the network, and it passes

through the layers to generate an output ŷ. The expected output is y. Hence, the cost

function or the loss function to compare y and ŷ is C(y, ŷ). Also, the output for any hid-

den layer of the network can be represented as equation 8.4

(8.4)

where i (index) can be any layer in the network.

 The final layer’s output is

 y(x) = W (N)T h(N –1) + b(N) (8.5)

During the training of the network, we adjust the network’s weights so that C is reduced.

Hence, we calculate the derivative of C with respect to every weight in the network. The

following is the derivative of C with respect to every weight in the network:

Now we know that a neural network has many layers. The backpropagation algorithm

starts at calculating the derivatives at the last layer of the network, which is the Nth

layer. Then these derivatives are fed backward. So the derivatives at the N th layers will

be fed to the (N – 1) layer of the network and so on.

 Each component of the derivatives of C is calculated individually using the calculus

chain rule. As per the chain rule, for a function c depending on b, where b depends on

a, the derivative of c with respect to a can be written as equation 8.6:

(8.6)

Hence, in backpropagation the derivatives of the layer N are used in the layer (N – 1)

so that they are saved and again used in the (N – 2) layer. We start with the last layer of

the network, through all the layers to the first layer, and each time, we use the deriva-

tives of the last calculations made to get the derivatives of the current layers. Hence,

backpropagation turns out to be extremely efficient compared to a normal approach

where we would have calculated each weight in the network individually.

2538.5 How deep learning works in an unsupervised manner

 Once we have calculated the gradients, we update all the weights in the network.

The objective is to minimize the cost function. We have already studied methods like

gradient descent in the last section. We now continue to the next step in the neural

network training process.

8.4.2 Step 4: Optimization

Backpropagation allows us to optimize our network and achieve the best accuracy (see

figure 8.12). Notice the optimizer, which provides regular and continuous feedback to

reach the best solution.

Figure 8.12 Optimization is the process to minimize the loss function.

Once we have achieved the best values of the weights and biases for our network, we

say that our network is trained. We can now use it to make predictions on an unseen

dataset that has not been used for training the network.

8.5 How deep learning works in an unsupervised manner

We know that unsupervised learning solutions work on unlabeled datasets; thus, for

deep learning in unsupervised settings, the training dataset is unlabeled.

 As compared to supervised datasets where we have tags, unsupervised methods

have to self-organize themselves to get densities, probabilities’ distributions, prefer-

ences, and groupings. We can solve a similar problem using supervised and unsuper-

vised methods. For example, a supervised deep learning method can be used to

Optimizer

True value of

target variable

Loss function generating
the loss score

Input data

Data transformation

Data transformation

Weight updates

Weight updates

Prediction

254 CHAPTER 8 Deep learning: The foundational concepts

identify dogs versus cats while an unsupervised deep learning method might be used

to cluster the pictures of dogs and cats into different groups. In machine learning, a

lot of solutions that were initially conceived as supervised learning ones, over a period

of time, employed unsupervised learning methods to enrich the data and hence

improve the supervised learning solution.

 During the learning phase in unsupervised deep learning, it is expected that the

network will mimic the data and then improve itself based on the errors. In the super-

vised learning algorithm, other methods play the same part as the backpropagation

algorithm. These include, among others,

 Boltzmann learning rule

 Contrastive divergence

 Maximum likelihood

 Hopfield learning rule

 GAN

 Deep belief network (DBN)

In this book, we cover autoencoders and GAN in depth in separate chapters. The rest

of the methods are covered in this chapter.

 Next, we study the two most widely used types of neural networks in supervised

learning settings: the convolutional neural network (CNN) and the recurrent neural

network (RNN).

8.6 Convolutional neural networks

CNNs are a class of deep learning models that are primarily used for image and video

processing tasks. They have become a powerful tool in the field of computer vision

due to their ability to automatically detect and learn the pattern from raw images and,

hence, are used for several use cases across multiple domains and functions. We pro-

vide only a brief overview, as there can be an entire book on different types of CNN

solutions.

8.6.1 Key concepts of CNN

The following are the key concepts of CNN:

 Input layer—The input to the CNN is generally a tensor representing an image.

As we know, an image is made up of pixels, and each pixel is made up of RGB

Exercise 8.4

Answer these questions to check your understanding:

1 Write in a simple form the major steps in a backpropagation technique.

2 Backpropagation is preferred in unsupervised learning. True or False?

3 The objective of deep learning is to maximize the loss function. True or False?

2558.6 Convolutional neural networks

channels. An image is represented by a 3D matrix, which is a width × height

channel.

 Convolution layer—This is the core building layer of a CNN. It applies a filter to

the input data, which scans over the image to detect patterns like lines, curves,

texture, edges, etc. The filter size is generally small and usually 3 × 3 or 5 × 5. As

the kernel slides over the input, it performs an element-wise multiplication and

sum, creating a feature map. Multiple filters can be applied to learn different

features, generating multiple feature maps. The entire process is illustrated in

figure 8.13.

Figure 8.13 CNN process. The original data is 6 × 6, and the filter applied is 3 × 3, which

results in a 4 × 4 output.

 ReLU activation function—This is applied to add nonlinearity. It helps the net-

work to understand and model more complex and difficult patterns that are

present in the data.

 Polling layer—This is used to reduce the spatial dimensions of images while pre-

serving the most significant details. The most common type of pulling is called

max pulling. It takes the maximum value from a region of input. The major

function of the pooling layer is to reduce the computation load and also reduce

overfitting by providing a form of translation in variance.

 Output—After we have created several convolutional and pooling layers, we

receive the output. It is generally flattened into a 1D vector and the output is

then passed to the fully connected layer. The main task of the fully connected

layer is to perform high-level classification of the image based on the features

extracted by the previous layers.

 Output layer—If the solution is for classification of data points, the output layer

would contain a function like softmax. The softmax function gives respective

3

1

2

1

3

9

1

0

3

4

2

2

1

7

5

1

1

6

2

3

1

2

3

2

8

2

1

6

7

5

4

6

3

5

2

1

1

1

1

0

0

0

–1

–1

–1

–7

Original data
Output 4×4

3×3 filter

× =

Convolution
Result of element-wise
product and sum of filter
matrix and original data

256 CHAPTER 8 Deep learning: The foundational concepts

probabilities for different classes. For example, if you are trying to predict that a

given picture is a cat or a dog, the softmax function will give the probability of

the picture being a dog or a cat.

In CNNs, the same filter is applied across different regions of the image. Thus the

number of parameters is reduced as compared to a traditional fully connected net-

work. Each neuron in the convolutional layer is connected only to a small region of

the input, and so the complexity of the network is also reduced. The network also

automatically trains and learns to detect low-level patterns. An example of a low-level

pattern is edges. The network subsequently progresses to learn more complex pat-

terns like shapes in the deeper layers.

8.6.2 Use of CNN

Call networks are fundamental and foundational to the modern-day competition solu-

tions. They are heavily used for image classification, image processing, speech recog-

nition, developing computer board games, and various other video processing

solutions. Many solutions are developed using CNN—for example, automatic detec-

tion of vehicle license plates, detection of cancerous cells from scans, detection of bro-

ken bones from x-rays, facial recognition solutions, automatic entry handwriting,

recognition solutions, and many other solutions that are having an amazing affect

across our lives.

 There are quite a few CNN architectures available, like Inception, ResNet, LeNet,

VGG-16, etc., that are useful for creating computer vision solutions. We now move on

to the second common type of neural network: RNN.

8.7 Recurrent neural networks

RNNs are quite a popular class of networks that are designed to recognize patterns in

a sequence of data—for example, time service data or videos, natural languages, or

any other kind of data with this sequence of information. Here RNNs are very useful.

The most significant feature of RNNs is their ability to maintain a memory about the

previous input, which they capture using temporal dependencies and the order in the

dataset. This augments their capability to recognize patterns in the sequential data-

sets, and hence RNN has been found to be a parting solution in multiple domains.

8.7.1 Key concepts of RNN

RNNs are especially designed for sequential datasets, and here the order of the input

display plays a pivotal role. Hence, RNNs are the go-to solution for sequential data

handling.

 Unlike a regular neural network, which is also known as a feed-forward neural net-

work, RNNs have recurrent connections. This means that the output from one time

step is fed back as the input to the next time step. This information is persistent across

the sequence. At the same time, the same weight is used across different time steps.

2578.7 Recurrent neural networks

This makes them very efficient in terms of the number of parameters, as the same net-

work can be applied to every time step of the input sequence.

 RNNs work in the following fashion:

 The input data is processed sequentially. At each time step t, the network

receives an input xt, which is then combined with a hidden state ht –1. This

hidden state is the output from the previous time step and serves as a memory

that carries information from one time step to the next time step.

 The hidden state ht is then updated using a nonlinear function:

 The final output at each of the time steps can be calculated and used either for

each individual time step or only at the final time step.

Figure 8.14 illustrates the RNN process.

Figure 8.14 The RNN process. RNNs have internal memory, which allows them to

use information from the previous inputs to influence the current input and outputs.

The most basic version of an RNN is a simple recurrent network, but it struggles with a

long-term dependency because the gradient can either vanish or explode, making it

hard for the network to remember information from far back in the sequence; hence,

it cannot be used for a solution like a chatbot. Long short-term memory (LSTM) is

much more useful here. LSTM is a special type of network designed to mitigate the

vanishing gradient problem and handle long-term dependencies better than plain

vanilla RNNs. They achieve this feat by introducing gates. There are three types of

gates: input, forget, and output gates. These gates regulate the flow of information

through the network and allow it to maintain important information over longer peri-

ods of time. Gated recurrent units are another type of RNN, but LSTM and gated

recurrent units are beyond the scope of this book.

 RNNs are very powerful for processing sequences, and their ability to model time

dependencies makes them indispensable in the fields of natural language processing

and time-series analysis. Their use has been pathbreaking for many innovative solu-

tions—for example, predicting the next word in a sentence; translating text from one

258 CHAPTER 8 Deep learning: The foundational concepts

language to another; processing sequences of video frames to understand behaviors

over time; modeling temporal dependencies like audio signals, which can be used to

recognize speech patterns over time; and many more. RNNs are the power engines

behind GenAI solutions.

8.8 Boltzmann learning rule

The Boltzmann learning rule is an unsupervised learning rule used in neural net-

works. It is based on the principle of statistical mechanics of physical systems. It is

seldom used in the context of Boltzmann machines. It adjusts the weights of a neural

network with an objective to minimize the energy of the system, thereby ensuring the

network reaches a stable state.

8.8.1 Concepts of the Boltzmann learning rule

The following are the key concepts of the Boltzmann learning rule:

 It is a type of probabilistic RNN where neurons are connected in a fully con-

nected graph.

 The neurons in the Boltzmann machine are stochastic units that fire as per a

probability distribution. Thus we can use the Boltzmann learning rule for

dimensionality reduction, pattern recognition, feature extraction, and optimi-

zation tasks.

 A Boltzmann machine has an energy function E(v,h) where v is the input visible

unit while h is the hidden unit. The energy function determines the cost of a

given state of the network. During the training of the network, we aim to adjust

the weights in such a manner so that the energy of the system is minimized.

 The network models the probability of a particular state (v,h) using a Boltz-

mann distribution. It depends on the energy of the state, which is given by

equation 8.7:

(8.7)

Here, Z is the partition function, which ensures that the sum of probabilities = 1.

 The rule seeks to adjust the weights to keep on decreasing the energy of the sys-

tem during the training of the network, and it happens over time. The weights

are updated by a rule derived from gradient of the energy function with respect

to the weights. The weight update rule is given in equation 8.8:

(8.8)

Here,  is the learning rate, and (vihj)data is the correction between the visible

unit vi and hidden unit hj. It is computed from the data distribution. It rep-

resents how often they are active together in the hidden unit. (vihj)model is the

correction computed from the model distribution. It represents how often the

2598.9 Deep belief networks

visible unit vi and hidden unit hj are active together in the state generated by

the network.

During the training of the model, a learning rule is followed, which is to

make the data distribution match the model distribution. Hence, it reduces the

energy of the system and thereby increases the overall performance.

8.8.2 Key points

There are certain key points we should bear in mind. Energy-based models like the

Boltzmann machine use the Boltzmann learning rule to minimize an energy function

by adjusting the network’s weights:

 The network strives to model the probability distribution over its inputs. The

core objective here is to associate the higher energy with less likely configura-

tions. Similarly, the lower energy is associated with more like configurations.

 Boltzmann learning is an unsupervised and probabilistic method. It works on

the concept of contrasting the model distribution and data distribution.

 The rule is computationally expensive in its basic form; hence, to increase the

training speed, sometimes we utilize methods like contrastive divergence. We

cover contrastive divergence in the next section.

 The Boltzmann learning rule is primarily used for unsupervised learning tasks

such as dimensionality reduction, feature extraction, and generative modeling.

 The model training is sometimes slower than expected.

In summary, the Boltzmann learning rule is a probabilistic approach to training neu-

ral networks by adjusting weights based on minimizing an energy function, and it pro-

vides a foundation for generative models like Boltzmann machines. However, due to

computational challenges, approximations such as contrastive divergence are often

used to make it practical for real-world applications.

8.9 Deep belief networks

A DBN is a type of GAN made up of multiple layers of stochastic, binary latent vari-

ables (hidden units), where each layer is a restricted Boltzmann machine (RBM) or a

variant of it. DBNs were popularized by Geoffrey Hinton (who was awarded the Nobel

Prize in Physics in 2024, shared with John Hopfield) and his collaborators in the mid-

2000s for pretraining deep networks in an unsupervised way.

8.9.1 Key points of DBN

The key points of a DBN are as follows:

 RBM

– A DBN consists of several layers of RBMs. A RBM contains a visible layer and

a hidden layer. The visible layer represents the observed data while the hid-

den layer captures the hidden features.

260 CHAPTER 8 Deep learning: The foundational concepts

– Each DBN is trained independently with an objective to model the underly-

ing structure of the data.

 The objective of the training in DBN is to optimize the log-likelihood of the

data under the network’s generative model. For each layer, the contrastive

divergence algorithm is used to approximate the gradient of the log-likelihood

with respect to the weights. This allows the network to learn a good set of

weights for each layer.

 The contrastive divergence algorithm is a stochastic approximation method

used to estimate the gradient of the log-likelihood of the model. The algorithm

starts with a sample from the visible layer and then performs Gibbs sampling to

update the hidden layer and visible layer iteratively. Contrastive divergence

ensures that the network learns to model the input data distribution efficiently.

 Layer-based pretraining:

– DBNs are typically trained in a layer-wise manner, where each layer is pre-

trained as an RBM. The first RBM has an objective to learn to capture low-

level features from the data.

– Based on this knowledge, each subsequent RBM then learns increasingly

complex, abstract features from the representations learned by the previous

layers. In this manner, the cycle continues.

– This phase involves training each RBM individually using contrastive

divergence.

– This process tunes the weights to capture relevant patterns and features in

the input data, without the need for labeled data.

– Since each layer learns features at increasing levels of abstraction and com-

plexity, it makes the overall solution good enough for complex tasks like

image or speech recognition.

 Supervised fine-tuning:

– Once the pretraining is done, the entire network is fine-tuned. It is done in a

supervised fashion using methods like backpropagation or a labeled dataset

with an objective to optimize the network.

– The supervised system adjusts the network weights to minimize the predic-

tion error such as what is done in classification or regression tasks.

– The unsupervised pretraining phase helps initialize the weights in such a way

that the network is less likely to overfit during supervised fine-tuning, as it

starts with a better understanding of the data.

– They are computationally expensive and time-consuming, particularly when

dealing with large datasets or deep architectures.

– Pretraining using RBMs is useful, but fine-tuning the entire DBN can some-

times be difficult, especially if we are dealing with a very deep neural

2618.10 Popular deep learning libraries

network. It may necessitate meticulous hyperparameter training and lots of

labeled datasets.

– Similar to other deep learning architectures, DBNs are also prone to the van-

ishing gradient problem, where gradients diminish as they are propagated

backward through many layers. This further complicates the entire training

process.

DBNs are typically used for unsupervised learning, dimensionality reduction, and fea-

ture learning, but they can also be fine-tuned for supervised tasks such as classification.

DBNs are used to improve the performance of speech recognition systems by learning

representations of sound features that are invariant to noise and other distortions. As

generative models, DBNs can be used to create new data instances that resemble the

training data. For example, DBNs have been used in generative art, where new images

are created that resemble a set of input images.

 DBNs are a significant milestone in the development of deep learning techniques.

They combine the strengths of generative models like RBMs with deep learning prin-

ciples to create a powerful method for learning complex representations of data.

While newer architectures have emerged and gained prominence, DBNs remain a key

historical and theoretical component of modern AI, influencing the development of

many advanced models. By utilizing unsupervised learning, DBNs can be highly effec-

tive for tasks like dimensionality reduction, generative modeling, and classification.

However, challenges related to training complexity and fine-tuning remain significant

hurdles for widespread adoption.

8.10 Popular deep learning libraries

Over the last few chapters, we have used a lot of libraries and packages for implement-

ing solutions. There are quite a few libraries available in the industry for deep learn-

ing. These packages expedite the solution building and reduce the efforts as most of

the heavy lifting is done by these libraries.

 The most popular deep learning libraries are

 TensorFlow (TF)—Developed by Google, this is arguably one of the most popular

and widely used deep learning frameworks. It was launched in 2015 and since

has been used by a number of businesses and brands across the globe.

Python is mostly used for TF but C++, Java, C#, Javascript, and Julia can also

be used. You have to install the TF library on your system and import the library.

NOTE Go to www.tensorflow.org/install and follow the instructions to
install TF.

TF is one of the most popular libraries and can work on mobile devices like iOS

and Android.

http://www.tensorflow.org/install

262 CHAPTER 8 Deep learning: The foundational concepts

 Keras—Keras is a mature API-driven solution and quite easy to use. It is one of

the best choices for starters and is among the best for prototyping simple con-

cepts in an easy and fast manner. Keras was initially released in 2015 and is one

of the most recommended libraries.

NOTE Go to https://keras.io and follow the instructions to install Keras.
Tf.keras can be used as an API.

Serialization/deserialization APIs, call-backs, and data streaming using Python

generators are very mature. Massive models in Keras are reduced to single-line

functions, which makes it a less configurable environment and hence very con-

venient and easy to use.

 PyTorch—Facebook’s brainchild PyTorch was released in 2016 and is another

popular framework. PyTorch operates with dynamically updated graphs and

allows data parallelism and distributed learning models. There are debuggers

like pdb or PyCharm available in PyTorch. For small projects and prototyping,

PyTorch can be a good choice.

 Sonnet—DeepMind’s Sonnet is developed using and on top of TF. Sonnet is

designed for complex neural network applications and architectures. It works

by creating primary Python objects corresponding to a particular part of the

neural network. Then these Python objects are independently connected to the

computational TF graph. Because of this separation (creating Python objects

and associating them to a graph), the design is simplified.

NOTE Having high-level object-oriented libraries is very helpful, as the
abstraction is allowed when we develop machine learning solutions.

 MXNet—Apache’s MXNet is a highly scalable deep learning tool that is easy to

use and has detailed documentation. A large number of languages like C ++,

Python, R, Julia, JavaScript, Scala, Go, and Perl are supported by MXNet.

There are other frameworks too, like Swift, Gluon, Chainer, DL4J, etc.; however, we

only discuss the popular ones here. We now examine a short code in TF and Keras. It

is just to test that you have installed these libraries correctly. You can learn more about

TF at https://www.tensorflow.org and Keras at https://keras.io.

8.10.1 Python code for Keras and TF

We implement a very simple code in TF. We simply import the TF library and print

“hello”. We also check the version of TF:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
print("TensorFlow version:", tf.__version__)

https://keras.io
https://www.tensorflow.org
https://keras.io

2638.11 Concluding thoughts

If this code runs for you and prints the version of TF, it means that you have installed

tensorflow correctly:

from tensorflow import keras
from keras import models

If this code runs for you and prints the version of Keras, it means that you have

installed keras correctly.

8.11 Concluding thoughts

Deep learning is changing the world we live in. It is enabling us to train and create

really complex solutions that were a mere thought earlier. The effect of deep learning

can be witnessed across multiple domains and industries. Perhaps there are no indus-

tries that have been left unaffected by the marvels of deep learning.

 Deep learning is one of the most-sought-after fields for research and development.

Every year, many journals and papers are published on deep learning. Researchers

across prominent institutions and universities (like Oxford, Stanford, etc.) of the

world are engrossed in finding improved neural network architectures. At the same

time, professionals and engineers in reputed organizations (like Google, Facebook,

etc.) are working hard to create sophisticated architectures to improve performance.

 Deep learning is making our systems and machines able to solve problems typically

assumed to be in the realm of humans only. We have improved the clinical trials pro-

cess for the pharma sector, fraud detection software, automatic speech detection sys-

tems, and various image recognition solutions; and created more robust natural

language processing solutions, targeted marketing solutions that improve customer

relationship management and recommendation systems, better safety processes, and

so on. The list is quite long and growing day by day.

 At the same time, there are still a few challenges. The expectations from deep

learning continue to increase. Deep learning is not a silver bullet or a magic wand to

resolve all problems. It is surely one of the more sophisticated solutions, but it is cer-

tainly not the 100% solution to all business problems. The dataset we need to feed the

algorithms is not always available. There is a dearth of good-quality datasets that are

representative of business problems. Often, big organizations like Google, Meta, or

Amazon can afford to collect such massive datasets. But many times we do find a lot of

quality problems in the data. Having the processing power to train these complex

algorithms is also a challenge. With the advent of cloud computing, though, this prob-

lem has been resolved to a certain extent.

 In this chapter, we explored the basics of neural networks and deep learning. We

covered the details around neurons, activation function, different layers of a network,

and loss function. We also covered in detail the backpropagation algorithm—the cen-

tral algorithm used to train a supervised deep learning solution. Then we briefly went

through unsupervised deep learning algorithms. We will cover these unsupervised

264 CHAPTER 8 Deep learning: The foundational concepts

deep learning solutions in greater detail in the later chapters. Figure 8.15 shows the

major activation functions.

Figure 8.15 Major activation functions at a glance (Source: towardsdatascience)

8.12 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 The book Deep Learning with Python by François Chollet is one of the best

resources to clarify the concepts of deep learning. It covers all the concepts of

deep learning and neural networks and is written by the creator of Keras.

 Read the following research papers:

265Summary

– Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a

Neural Network. https://arxiv.org/pdf/1503.02531.pdf

– Srivastava, R., Greff, K., and Schmidhuber, J. (2015). Training Very Deep

Networks. https://arxiv.org/pdf/1507.06228

– Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distrib-

uted Representations of Words and Phrases and their Compositionality.

https://arxiv.org/abs/1310.4546

– Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative

Adversarial Networks. https://arxiv.org/abs/1406.2661

– He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for

Image Recognition. https://arxiv.org/abs/1512.03385

Summary

 Deep learning is an advanced form of machine learning based on neural net-

works, and it’s particularly effective with unstructured data like text, images,

audio, and video.

 Deep learning finds applications across various sectors, such as

– The medical field and pharmaceuticals—Used for diagnosing medical condi-

tions and expediting drug development

– Banking and finance—Detects fraud and distinguishes fake signatures

– The automobile sector—Powers autonomous driving by recognizing traffic

elements

– Speech and image recognition—Enables technologies like Siri and image-based

systems for medical diagnostics and security

 Key concepts for neural networks include

– Artificial neurons (perceptrons)—Simplified models of biological neurons.

Weights and biases play crucial roles in the function of a perceptron.

– Layers—Networks are structured with input, hidden, and output layers. Hid-

den layers extract and learn features critical for decision-making.

– Activation functions—Critical for neural network performance and include

sigmoid, TANH, LeLU, and softmax.

 Training neural networks involves processes like feed-forward propagation, cal-

culating loss, and employing backpropagation for weight adjustments to maxi-

mize prediction accuracy.

 While unsupervised learning relies on unlabeled data, techniques like Boltz-

mann learning and DBNs are central to improving data organization in such

settings.

 CNNs are primarily used in image and video processing. CNNs excel in recog-

nizing patterns due to their architecture, featuring layers like convolutional

and polling layers for feature extraction.

https://arxiv.org/pdf/1507.06228
https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.03385

266 CHAPTER 8 Deep learning: The foundational concepts

 RNNs are suitable for sequential data. RNNs maintain information across

inputs and are enhanced by LSTMs for long-term dependency challenges. They

are key in natural language processing and time-series analysis.

 The Boltzmann learning rule is an unsupervised, probabilistic method used in

neural networks to adjust weights by minimizing an energy function, often aid-

ing in tasks like dimensionality reduction and feature extraction, but computa-

tional challenges require approximations like contrastive divergence.

 DBNs are GANs consisting of layers of RBMs, utilizing unsupervised pretraining

to learn complex data representations and supervised fine-tuning for tasks like

classification, yet they face challenges, including computational expense and

potential overfitting.

 DBNs use layer-wise pretraining to capture abstract features, making them suit-

able for complex applications like image or speech recognition; however, prob-

lems like the vanishing gradient problem and intricate fine-tuning processes

can impede performance.

 Despite newer deep learning architectures gaining popularity, DBNs remain

integral to the evolution of AI, playing a critical role in the development of

models for tasks including dimensionality reduction, generative modeling, and

classification, although training complexity continues to be a barrier.

267

Autoencoders

Out of intense complexities, intense simplicities emerge.

—Winston Churchill

In the preceding chapter, we explored the concepts of deep learning. In this chap-

ter, we start with unsupervised deep learning. Autoencoders are the very first topic.

We will first cover the basics of autoencoders, what are they, and how we train them.

We then get into the different types of autoencoders followed by a Python code on

the implementation. Welcome to the ninth chapter, and all the very best!

9.1 Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we

have used so far. The codes and datasets used in this chapter have been checked in

This chapter covers

 Introducing autoencoders

 Training of autoencoders

 Types of autoencoders

 Python code using TensorFlow and Keras

268 CHAPTER 9 Autoencoders

at the GitHub location. You need to install a couple of Python libraries in this chapter:

tensorflow and keras.

9.2 Feature learning

Predictive modeling is quite an interesting topic. Across various domains and business

functions, predictive modeling is used for various purposes like predicting the sales

for a business in the next year, the amount of rainfall expected, whether the incoming

credit card transaction is fraud or not, whether the customer will make a purchase or

not, and so on. The use cases are many, and all the aforementioned use cases fall

under supervised learning algorithms.

NOTE The datasets that we use have variables or attributes. They are also
called characteristics or features.

While we wish to create these predictive models, we are also interested in understand-

ing the variables that are useful for making the prediction. Let’s consider a case where

a bank wants to predict if an incoming transaction is fraudulent or not. In such a sce-

nario, the bank will wish to know which factors are significant to identify an incoming

transaction as fraud. Factors that might be considered include the amount of the

transaction, the time of the transaction, the origin/source of the transaction, etc. The

variables that are important for making a prediction are called significant variables.

 To create a machine learning–based predictive model, feature engineering is used.

Feature engineering, otherwise known as feature extraction, is the process of extract-

ing features from the raw data to improve the overall quality of the model and

enhance the accuracy as compared to a model where only raw data is fed to the

machine learning model.

 Feature engineering can be done using domain understanding, various manual

methods, and a few automated methods too. One such method is known as feature

learning. Feature learning is the set of techniques that help a solution automatically dis-

cover the representations required for feature detection. With the help of feature

learning, manual feature engineering is not required. The effect of feature learning is

much more relevant for datasets where images, text, audio, and video are being used.

 Feature learning can be both supervised and unsupervised. For supervised feature

learning, neural networks are the best example. For unsupervised feature learning, we

have examples like matrix factorization, clustering algorithms, and autoencoders. We

have already covered clustering and matrix factorization. In this chapter, we start with

an introduction to autoencoders.

9.3 Introducing autoencoders

When we start with any data science problem, data plays the most significant role. A

dataset that has a lot of noise is one of the biggest challenges in data science and

machine learning. There are quite a few solutions available now, and autoencoders

are one of them.

2699.4 Components of autoencoders

 Simply put, an autoencoder is a type of artificial neural network, and it is used to

learn the data encodings. Autoencoders are typically used for dimensionality reduc-

tion methods. They can also be used as generative models, which can create synthetic

data that is like the old data. For example, if we do not have a good amount of data to

train machine learning, we can use generated synthetic data to train the models.

 Autoencoders are feed-forward neural networks, and they compress the input into

a lower dimensional code and then try to reconstruct the output from this representa-

tion. The objective of an autoencoder is to learn the lower dimensional representa-

tion (also sometimes known as encoding) for a high-dimensional dataset. Recall from

the previous chapters principal component analysis (PCA). Autoencoders can be

thought of as a generalization for PCA. PCA is a linear method whereas autoencoders

can learn nonlinear relationships as well. Hence, autoencoders are required for

dimensionality reduction solutions wherein they capture the most significant attri-

butes from the input data.

9.4 Components of autoencoders

The architecture of an autoencoder is quite simple to understand. An autoencoder

consists of three parts: an encoder, a bottleneck or a code, and a decoder, as shown in

figure 9.1. In simple terms, an encoder compresses the input data, a bottleneck or

code contains this compressed information, and the decoder decompresses the

knowledge and hence reconstructs this data back to its original form. Once the

decompression has been done and the data has been reconstructed to its encoded

form, the input and output can be compared.

Let’s study these components in more detail:

 Encoder—The input data passes through the encoder. An encoder is nothing

but a fully connected artificial neural network. It compresses the input data into

an encoded representation, and in the process the output generated is reduced

Encoder

Bottleneck

Decoder

Figure 9.1 Structure of an

autoencoder with an encoder, a

bottleneck, and a decoder

270 CHAPTER 9 Autoencoders

in size. An encoder compresses the input data into a compressed module

known as a bottleneck.

 Bottleneck—The bottleneck can be considered the brain of the encoder. It con-

tains the compressed information representations, and it is the job of the bot-

tleneck to allow only the most important information to pass through.

 Decoder—The information received from the bottleneck is decompressed by a

decoder. It re-creates the data back to its original or encoded form. Once the

job of the decoder is done, the actual values are compared with the decom-

pressed values created by the decoder.

There are a few important points about autoencoders to consider:

 There is a loss of information in autoencoders when the decompression is done

as compared to the original inputs. So when the compressed data is decom-

pressed, there is a loss as compared to the original data.

 Autoencoders are specific to datasets. This means that an algorithm that is

trained on images of flowers will not work on images of traffic signals and vice

versa. This is because the features the autoencoder learned will be specific to

flowers only. So we can say that autoencoders are only able to compress the data

similar to the one used for training.

 It is relatively easier to train specialized instances of algorithms to perform well

on specific types of inputs. We just need representative training datasets to train

the autoencoder.

9.5 Training of autoencoders

It is important to note that if there is no correlation between the variables in the data,

then it is really difficult to compress and subsequently decompress the input data. For

us to create a meaningful solution, there should be some level of relationship or cor-

relation between the variables in the input data. To create an autoencoder, we require

an encoding method, a decoding method, and a loss function to compare the actual

versus decompressed values.

 The process is as follows:

1 The input data passes through the encoder module.

2 The encoder compresses the input of a model into a compact bottleneck.

3 The bottleneck restricts the flow of information and allows only important

information to pass through; hence, a bottleneck is sometimes referred to as

knowledge-representation.

4 The decoder decompresses the information and re-creates the data back to its

original or encoded form. This encoder-decoder architecture is quite efficient

in getting the most significant attributes from the input data.

The objective of the solution is to generate an output identical to the input. Generally,

the decoder architecture is a mirror image of the coder architecture. This is not man-

datory but is generally followed. We ensure that the dimensionality of the input and

outputs are the same.

2719.7 Types of autoencoders

NOTE If you do not know the meaning of hyperparameter, refer to the
appendix.

We need to define four hyperparameters for training an autoencoder:

 Code size—This is perhaps the most significant hyperparameter. It represents

the number of nodes in the middle layer. This decides the compression of the

data and can also act as a regularization term. The less the value of code size,

the more compressed the data.

 Parameter—This denotes the depth of the autoencoder. A model that has more

depth is obviously more complex and will have a longer processing time.

 Number of nodes per layer—This is the weight used per layer. It generally decreases

with every subsequent layer as the input becomes smaller across the layers. It

increases back in the decoder.

 Loss function used—If the input values are in the [0,1] range, binary cross-

entropy is preferred; otherwise, mean squared error is used.

We have covered the hyperparameters used in training autoencoders. The training

process is similar to backpropagation, which we have already covered.

9.6 Application of autoencoders

Autoencoders are capable of solving a number of problems inherent to unsupervised

learning. Major applications for autoencoders include

 Dimensionality reduction—Sometimes autoencoders can learn more complex

data projections than PCA and other techniques.

 Anomaly detection—The error or the reconstruction error (error between the

actual data and the reconstructed data) can be used to detect the anomalies.

 Data compression—It is difficult to beat the basic solutions like JPEG by training

the algorithm. Moreover, since autoencoders are data specific, they can use

only the types of datasets they have been trained upon. If we wish to enhance

the capacity to include more data types and make it more general, then the

amount of the training data required will be too high, and obviously, the time

required will be high too.

 Other applications—These include drug discovery, machine translation, image

denoising, etc.

There are still not a lot of practical implementations of autoencoders in the real

world. This is due to a multitude of reasons like the nonavailability of datasets, infra-

structure, readiness of various systems, etc.

9.7 Types of autoencoders

There are five main types of autoencoders. A brief description of the different types of

encoders is given next. We have kept the section mathematically light and skipped the

math behind the scenes as it is quite complex to understand. For curious readers, the

papers listed in section 9.10 can explain the mathematics:

272 CHAPTER 9 Autoencoders

 Undercomplete autoencoders—An undercomplete autoencoder is the simplest

form of an autoencoder. It simply takes an input dataset and then reconstructs

the same dataset again from the compressed bottleneck region. By penalizing

the neural network as per the reconstruction error, the model will learn the

most significant attributes of the data. By learning the most important attri-

butes, the model will be able to reconstruct the original data from the com-

pressed state. As we know, there is a loss when the compressed data is

reconstructed; this loss is called reconstruction loss.

Undercomplete autoencoders are unsupervised in nature as they do not

have any target label to train. Such types of autoencoders are used for dimen-

sionality reduction. Recall in chapter 2 we discussed dimensionality reduction

(PCA), and in chapter 6, we discussed the advanced dimensionality reduction

algorithms (t-distributed stochastic neighbor embedding and multidimensional

scaling). See figure 9.2.

Figure 9.2 The performance starts to improve with more dimensions but decreases

after some time. The curse of dimensionality is a real problem when it comes to

creating sound data science solutions.

Dimensionality reduction is possible using undercomplete autoencoders as the

bottleneck is created, which is the compressed form of the input data. This

compressed data can be decompressed back with the aid of the network. Recall

in chapter 3 we explained that PCA provides a linear combination of the input

variables. For more details and to refresh your memory on PCA, please refer to

chapter 3. We know that PCA tries to get a low-dimensional hyperplane to

2739.7 Types of autoencoders

describe the original dataset; undercomplete autoencoders can also learn non-

linear relationships. The difference is shown in figure 9.3.

Interestingly, if all the nonlinear activation functions are removed from the

undercomplete autoencoder and only linear layers are used, the autoencoder is

equivalent to a PCA only. To make the autoencoder generalize and not memo-

rize the training data, an undercomplete autoencoder is regulated and fine-

tuned by the size of the bottleneck. It allows the solution to not memorize the

training data and generalize very well.

NOTE If a machine learning model works very well on the training data but
does not work on the unseen test data, it is called overfitting.

 Sparse autoencoders—Sparse autoencoders are similar to undercomplete autoen-

coders except they use a different methodology to tackle overfitting. Conceptu-

ally, a sparse autoencoder changes the number of nodes at each of the hidden

layer and keeps it flexible. Since it is not possible to have a neural network capa-

ble of a flexible number of neurons, the loss function is customized for it. In

the loss function, a term is introduced that captures the number of activated

neurons. The penalty term is proportional to the number of activated neurons.

The higher the number of activated neurons, the higher the penalty. This pen-

alty is called the sparsity function. Using the penalty, it is possible to reduce the

number of activated neurons; hence the penalty is lower, and the network is

able to tackle the problem of overfitting.

 Contractive autoencoders—Contractive autoencoders work on a similar concept as

other autoencoders. They consider that the inputs that are quite similar should

be encoded the same. Hence, they should have the same latent space represen-

tation. It means that there should not be much difference between the input

data and the latent space.

Figure 9.3 PCA is linear in

nature while autoencoders

are nonlinear. This is the

core difference between the

two algorithms.

274 CHAPTER 9 Autoencoders

 Denoizing autoencoders—Denoizing means removing the noise, and that is the

precise task of denoizing autoencoders. They do not take an image as an input;

instead they take a noisy version of an image as an input as shown in figure 9.4.

Figure 9.4 An original image, noisy output, and the outputs from the autoencoder

The process of denoizing the autoencoder is depicted in figure 9.5. The origi-

nal image is changed by adding noise to it. This noisy image is fed to the

encoder-decoder architecture and the output received is compared to the origi-

nal image. The autoencoder learns the representation of the image, which is

used to remove the noise; this is achieved by mapping the input image into a

lower dimensional manifold.

Figure 9.5 The process of denoizing in an autoencoder. It starts with the original image; noise

is added, which results in a noisy image, and then it is fed to the autoencoder.

We can use denoizing autoencoders for nonlinear dimensionality reduction.

 Variational autoencoders—A standard autoencoder model represents the input in

a compressed form using the bottleneck. A variation is probabilistic generative

Original images

Noisy input

Autoencoder output

2759.8 Python implementation of autoencoders

models (usually Gaussian) over latent variables, which only need neural net-

works as a part of their overall structure. They are trained using expectation-

maximization meta-algorithms. The mathematical details are beyond the scope

of this book.

9.8 Python implementation of autoencoders

Let’s create two versions of an autoencoder. The code has been taken from the

official source at the Keras website (https://blog.keras.io/building-autoencoders-in

-keras.html) and has been modified for our usage. The steps are as follows:

1 Import the necessary libraries:

import keras
from keras import layers

2 Create our network architecture:

This is the size of our encoded representations
encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming
the input is 784 floats

This is our input image
input_img = keras.Input(shape=(784,))
"encoded" is the encoded representation of the input
encoded = layers.Dense(encoding_dim, activation='relu')(input_img)
"decoded" is the lossy reconstruction of the input
decoded = layers.Dense(784, activation='sigmoid')(encoded)

This model maps an input to its reconstruction
autoencoder = keras.Model(input_img, decoded)

3 Add more details to the model:

This model maps an input to its encoded representation
encoder = keras.Model(input_img, encoded)

This is our encoded (32-dimensional) input
encoded_input = keras.Input(shape=(encoding_dim,))
Retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
Create the decoder model
decoder = keras.Model(encoded_input, decoder_layer(encoded_input))

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

4 Load the datasets:

(x_train, _), (x_test, _) = mnist.load_data()

5 Create the train and test the datasets:

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html

276 CHAPTER 9 Autoencoders

x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)

6 Fit the model (see figure 9.6):

autoencoder.fit(x_train, x_train,
 epochs=5,
 batch_size=128,
 shuffle=True,
 validation_data=(x_test, x_test))

Figure 9.6 Fitting the model

7 Test it on the test dataset:

Encode and decode some digits
Note that we take them from the *test* set
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)

8 Plot the results. You can see the original image and final output (see figure 9.7):

Use Matplotlib (don't ask)
import matplotlib.pyplot as plt

n = 10 # How many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):

WARNING:tensorflow:From /Users/vaibhavverdhan/anaconda3/lib/python3.6/site-packages/tensorflow/
python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops)is deprecated and
will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 6000 samples, validate on 1000 samples
Epoch 1/5
60000/60000 [==============================] - 2s 32us/step - loss: 0.2271 - val - loss: 0.1579
Epoch 2/5
60000/60000 [==============================] - 2s 26us/step - loss: 0.1409 - val - loss: 0.1252
Epoch 3/5
60000/60000 [==============================] - ls 24us/step - loss: 0.1184 - val - loss: 0.1103
Epoch 4/5
60000/60000 [==============================] - ls 24us/step - loss: 0.1072 - val - loss: 0.1025
Epoch 5/5
60000/60000 [==============================] - ls 25us/step - loss: 0.1009 - val - loss: 0.0974

Out[9]: <keras.callbacks.History at 0×7f852e2bfd30>

In [9]: 1

2

3

4

5

autoencoder.fit(x_train, x_train,

 epochs=5,

 batch_size=128,

 shuffle=True,

 validation_data=(x_test, x_test))

2779.10 Practical next steps and suggested readings

 # Display original
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)

 # Display reconstruction
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

Figure 9.7 The original image (bottom) and the final outcome (top)

9.9 Concluding thoughts

Deep learning is a powerful tool. With a sound business problem and a quality dataset,

we can create a lot of innovative solutions. Autoencoders are only one type of such

solutions.

 In this chapter, we started with feature engineering, which allows us to extract the

most significant features from a dataset. Then we moved to autoencoders. Autoencod-

ers are a type of neural network only used to learn efficient coding of unlabeled data-

sets. Autoencoders can be applied to many business problems like facial recognition,

anomaly detection, image recognition, drug discovery, machine translation, and so on.

9.10 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Read the blog at https://mng.bz/qxaw.

 Study the following papers:

– Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming Auto-

encoders. https://mng.bz/7p99

– Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoencoders. https://

arxiv.org/abs/2003.05991

– Michelucci, U. (2020). An Introduction to Autoencoders. https://arxiv.org/

abs/2201.03898

https://mng.bz/qxaw
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2201.03898
https://arxiv.org/abs/2201.03898
https://mng.bz/7p99

278 CHAPTER 9 Autoencoders

 See the good code and dataset available on the TensorFlow official page.

https://mng.bz/mGQr.

Summary

 Predictive modeling is used in various domains to make future predictions

using supervised learning algorithms.

 Key aspects of predictive modeling involve identifying significant variables or

features for accurate predictions.

 Feature engineering enhances model accuracy by extracting useful features

from raw data.

 Feature learning automates feature detection, suitable for datasets like images,

text, and audio.

 Autoencoders are a type of neural network used for data encoding, dimension-

ality reduction, and generating synthetic data.

 The architecture of autoencoders includes encoder, bottleneck, and decoder

components for data compression and reconstruction.

 Autoencoders face information loss, are dataset-specific, and are suitable for

precise applications.

 Training autoencoders requires encoding, decoding, and defining hyperparam-

eters such as code size and loss function.

 Major applications include dimensionality reduction, anomaly detection, and

data compression, among others.

 Types of autoencoders include undercomplete, sparse, contractive, denoizing,

and variational.

 Sparse and contractive autoencoders address overfitting using different

methodologies.

 A Python implementation of basic autoencoder architecture involves the Keras

library for encoding and decoding data.

https://mng.bz/mGQr
https://mng.bz/mGQr

279

Generative adversarial
networks, generative AI,

and ChatGPT

Reality is created by mind. We can change our reality by changing our mind.

—Plato

In the last chapter, we discussed autoencoders. We now move to the some of the

most revolutionary technical advancements in recent times. You have probably

heard the terms generative adversarial networks (GANs), generative AI (GenAI),

and ChatGPT in the news. These are certainly game-changers for the industry. In

this penultimate chapter of the book, we discuss these innovations. Welcome to the

tenth chapter, and all the very best!

10.1 AI: A transformation

AI is a transformative field in computer science. It aims to create machines and

solutions that can mimic human intelligence. AI has indeed come a long way since

its birth and is changing our lives in multiple ways.

This chapter covers

 Generative adversarial networks

 Generative AI

 ChatGPT and BERT

280 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

 The concept of AI can be traced back to the mid-20th century. In 1956, John

McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon organized the

Darmouth Workshop, which is often credited for the birth of AI, as during this work-

shop the term “artificial intelligence” was coined. The researchers wanted to see how

machines can mimic human intelligence and be used for everyday life. In the initial

years, the researchers focused on symbolic AI. This approach involved using symbols

and logic to represent the knowledge and solve the problems. The progress in AI

slowed down during 1970s and 1980s when the funding was reduced. The late 20th

century and the early 21st century saw the resurgence of AI, thanks to the develop-

ment of machine learning techniques like neural networks and deep learning. The

new enabled AI systems started to make predictions and decisions by learning from

the historical data. With the availability of cloud computing, better service, and more

processing power, the training of algorithms was faster, easier, and cheaper, and there

was a shift from rule-driven to data-driven algorithms. With the launch of libraries like

TensorFlow and Keras, creating deep learning networks became something that any-

one with an internet connection could do.

 AI has had a significant effect on day-to-day life. For example, we have virtual assis-

tants like Siri and Alexa to make recommendations on streaming platforms and e-

commerce websites. AI has been applied in finance, retail, aviation, life sciences, man-

ufacturing, and many other industries and business functions, improving efficiency

and decision-making processes, increasing customer satisfaction, and decreasing

costs. The integration of AI with robotics has resulted in auto-driving cars, drones,

automation, and digital twins. We now have very intelligent robotic systems that have

the capability to perform very complex tasks. AI has thus far been a boon to the

human race, and with responsible use, it can provide great benefits.

 AI continues to grow, and that growth presents a unique set of opportunities and

challenges. There are biases and ethical concerns in AI systems; many activists have

also raised concerns about potential job displacements due to automation. Policymak-

ers and the government along with researchers are working tirelessly to make sure

that AI technologies are used responsibly and developed to serve humans, not work

against them.

10.2 GenAI and its significance

GenAI is a transformative field within the broader domains of AI. It is a testament to

one of the remarkable achievements we have made in the field of machine learning,

resulting in improvements in computer processing and generation of new content.

You have no doubt seen the examples of Generative Pre-trained Transformer 3 (GPT-

3) and its advanced versions, which are being used in multiple industries and func-

tions.

 The significant difference between traditional AI and GenAI is that GenAI solu-

tions can produce data while traditional AI systems perform tasks like predictions,

recommendations, or classifications. GenAI solutions are generally based on

28110.2 GenAI and its significance

GANs—autoregressive models like the transformer architecture, which empowers

solutions like GPT.

 GenAI is useful for multiple business domains and functions. A few of them are as

follows:

 Natural language processing-based solutions have immensely benefitted from

GenAI models. GenAI has enabled the development of intelligent chatbots, vir-

tual assistants, summarization of text, query engines, and customized content.

These solutions have been helpful for branding and marketing purposes, cus-

tomer services, research and development, optimizations, and academics. The

use of GenAI for natural language processing (NLP) is huge and is expanding

and improving every day.

 The life sciences and healthcare industry has been revolutionized through

GenAI tools. With these tools, the discovery of new drugs, generation of medical

reports, simulation of medical scenarios, training of healthcare professionals,

search of medical journals, and the overall medical research profession has

improved significantly. For example, AI can identify existing drugs that could be

repurposed for new therapeutic uses. By analyzing large datasets, AI can discover

connections between drugs and diseases that were not previously recognized. AI-

driven virtual screening can predict the binding affinity of small molecules to tar-

get proteins. This saves time and resources by reducing the number of com-

pounds that need to be synthesized and tested in the lab. The use of GenAI

within the healthcare industry is immensely beneficial for humans.

 Machine learning and data analysis is completely dependent on the quantity and

quality of data available. Many times, there is a scarcity of good-quality datasets.

GenAI is playing a valuable role in the creation of synthetic data to augment and

expand smaller datasets. This process improves the overall quality of the training

dataset and hence improves the performance of the model. Using the synthetic

data, the model becomes less generic, and the risk of overfitting is reduced.

 Using GenAI, customer experiences are improving. With GenAI algorithms, a

business is able to create customized recommendations, experiences, content,

and solutions. With this enhanced experience, overall user engagement is

improved, and the customer becomes more satisfied, leading to higher cus-

tomer lifetime value. Certainly, GenAI has been changing the personalization

experience of customers. It can be extended to any business domain like retail,

finance, telecom, or aviation.

 GenAI’s ability to create content like art, music, text, videos, and images is very

useful. It helps professionals in the creative fields by automating multiple steps of

their work. Authors now can use GenAI for innovative ideas, image designers can

use it to create designs, and music directors can use it to create a piece of music.

 In the field of research and science, GenAI is helping scientists and researchers

in the simulation of experiments. It can simulate multiple scenarios, model very

complex physical systems, and predict the outcome of the experiments. Cer-

282 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

tainly, it decreases the amount of time and cost involved in the overall experi-

ment. Researchers and scientists can reach results much faster now.

These are only a few examples of the significance of GenAI; the possibilities are

immense. GenAI is certainly a game-changer with futuristic applications.

 Next we compare discriminative and generative models. We have discussed dis-

criminative models throughout the book. Now we will clarify the differences between

discriminative models and GenAI ones.

10.3 Discriminative models and GenAI

In the realm of machine learning and AI, discriminative models and generative mod-

els are two fundamental approaches. Both can be used for classification, estimation,

and generation purposes. There are similarities and differences.

 Discriminative models create the boundary that separates different classes or cate-

gories of datasets. These types of models are generally helpful for making predictions

and for data classification solutions. Some of the attributes of discriminative models

are as follows:

 Discriminative models are generally used in supervised learning solutions. As

you know, supervised learning is for labeled datasets, where we have a target

variable to train an algorithm. Using supervised learning solutions for categori-

cal variables, we can predict the probability for an event to happen or not—for

example, if the customer will churn or not, whether the incoming credit card

transaction is fraud or genuine, and so on. Similarly, using supervised learning

solutions for numeric variables, we can predict an estimated value for a

numeric variable—for example, what the sales of a store next month will be or

the number of calls a call center can expect in the next week. Discriminative

models predict the conditional probability for an output given an input value,

and hence they are a great solution for any kind of classification task.

 The most common examples of discriminative models are logistic regression,

decision trees, random forests, support vector machines, and deep learning–

based networks used for image and text classification. There are many discrimi-

native models at our disposable.

For generative models, our purpose is to capture the underlying distribution of the

data they are trained on. They seek to learn how the data is generated and how they

can use that intelligence to generate new data points that are similar to the training

dataset. Some of the salient attributes of the generative models are as follows:

 Generative models provide a probability distribution over the entire data space;

they can generate new data points that are similar to the training data. It makes

them very helpful for solutions like synthetic text and image generation.

 Generative models are very helpful for unsupervised learning solutions like

dimensionality reduction and clustering. This is because they do not rely on the

presence of explicit labels, and hence they can reveal the underlying patterns

28310.4 Generative adversarial networks

present in the dataset. A few examples are hidden Markov models, GANs, and

variational autoencoders.

If we compare discriminative and generative models, we will find the following:

 Generative models generally require a bigger dataset for training as they have

to learn the entire data distribution. Discriminative models, however, can work

with smaller labeled datasets too.

 Generative models are typically much more complex than discriminative mod-

els. Generative models use the underlying structure of the data and require

more computational time and resources to achieve the solution.

 Generative models have been used for content generation and the estimation

of density; discriminative models, on the other hand, are designed for broader

classifications and predictions. Hence, in current scenarios you will find dis-

criminative models are more popular than generative models.

 Discriminative models are more efficient and require less computation cost and

memory. Thus they are more popular in the present scenarios for industry.

Both generative and discriminative models have their own set of pros and cons. The

choice depends on the business problem at hand and the dataset available. While dis-

criminative models are much more effective and efficient in classification and predic-

tion, generative models are more versatile and useful for data generation and

exploration. As users, we require an in-depth understanding of these models and

their characteristics. Only then can we choose the right solution for the business prob-

lem at hand.

10.4 Generative adversarial networks

GANs represent a revolutionary deep learning architecture that has made significant

contributions to the field of generative modeling. GANs were introduced by Ian Good-

fellow and his colleagues in 2014 and have since become a cornerstone in various appli-

cations, including image generation, style transfer, data augmentation, and more.

 At their core, GANs consist of two neural networks: the generator and the discrim-

inator. The generator is responsible for creating synthetic data, such as images or text,

while the discriminator’s role is to distinguish between real data and data produced by

the generator. In our in-depth explanation, we dissect the GAN architecture, provid-

ing a detailed understanding of its key components, training process, and practical

applications.

10.4.1 The generator network

The generator network is the creative force behind GANs. Its primary role is to pro-

duce synthetic data, mimicking real data as closely as possible. The generator network

takes random noise as input, often sampled from a simple distribution like a Gaussian

or uniform distribution. This noise vector is then passed through a series of layers, typ-

ically consisting of convolutional or transposed convolutional layers in the case of

284 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

image generation or recurrent layers for text generation. The generator’s purpose is

to transform the input noise into data that closely resembles the real data distribution.

See figure 10.1.

 Let’s take a closer look at how the generator network operates:

 Input noise—The generator initiates the process with an input noise vector. This

noise vector serves as the seed for generating data. The noise vector is typically

drawn from a simple probability distribution, such as a Gaussian distribution.

 Transformations—The input noise is passed through a series of layers within the

generator. Each layer transforms the input in a way that makes it increasingly

resemble the real data distribution. These transformations are learned through

the training process.

 Generation—As the input noise progresses through the network, it gradually

takes on the characteristics of the target data. This transformation process con-

tinues until the data produced by the generator is presented as the final output.

 Loss function—The quality of the generated data is measured using a loss func-

tion, which quantifies how similar the generated data is to the real data. The

goal of the generator is to minimize this loss, thereby creating data that is as

realistic as possible.

Figure 10.1 Representation of a GAN

The generator’s ultimate objective is to produce data that is virtually indistinguishable

from authentic data. However, achieving this level of realism is a complex task, and it

relies heavily on the adversarial relationship with the discriminator network.

 We now move to the counterpart of the generative network, which is the discrimi-

nator network.

10.4.2 The discriminator network

The discriminator network, as the counterpart of the generator, plays a crucial role in

GANs. Its purpose is to differentiate between real data and fake data. The discrimina-

tor is a binary classifier, trained to assign high probabilities (close to 1) to real data

and low probabilities (close to 0) to fake data.

Real Data

Generator

Sample

Sample

Discriminator

Discriminator

loss

Generator

loss

Random noise

28510.4 Generative adversarial networks

 Let’s explore the discriminator network in more detail:

 Training data—Usually, the discriminator network is exposed to a dataset com-

prising real data. This dataset is primarily used to clean the discriminator, which

allows it to distinguish the authentic data from the synthetic data.

 Discrimination—When the discriminator has been trained, we can use it to eval-

uate the datasets. It takes both real data from the training dataset used and the

synthetic data produced by the generator as an input.

 Loss calculation—Now the discriminator computes a loss. This loss or error is

based on the ability of the discriminator to distinguish real data from the syn-

thetic data. If the discriminator correctly identifies real data as real and synthetic

data as synthetic, it means the performance is good, and hence the loss is mini-

mized. However, if the discriminator makes some errors, the loss would increase.

 Parameters updates—The discriminator’s parameters are adjusted to minimize

the computed loss. These updates are helpful for the discriminator to increase

its accuracy.

With an understanding of the underlying structure behind GANs, we now move to the

heart of the entire process: the training of the network.

10.4.3 Adversarial training

The adversarial training process is the heart of the GAN architectures. The overall

training process is as follows:

1 Initially, both the generator and the discriminator start with random weights.

2 The generator produces synthetic data from the random noise and presents it

to the discriminator along with the real dataset.

3 The discriminator analyzes, assesses, and assigns probabilities to each input.

This is an attempt to correctly distinguish real data from the synthetic data.

4 The generator is updated based on the feedback from the discriminator. The

objective is to generate data that becomes indistinguishable from the real data

by the discriminator.

5 The discriminator is updated to improve its ability to differentiate between real

and synthetic data.

6 This process is continued iteratively. The generator and the discriminator keep

on improving their capabilities. The generator becomes increasingly adept at

producing a realistic dataset while the discriminator becomes more skilled at

the identification process. This iterative and interesting competition drives the

overall solution to a point where the generated data is virtually indistinguish-

able from the authentic dataset.

The overall training process relies on two key loss functions:

 Generator loss—This function aims to minimize the discriminator’s ability to dis-

tinguish between real and synthetic datasets. Commonly used loss function

286 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

examples are binary cross entropy loss, which allows the generator to produce

data that the discriminator is more likely to classify as real.

 Discriminator loss—The discriminator loss function’s purpose is to maximize its

ability to distinguish real datasets from the synthetic or fake datasets. It aims to

minimize the binary cross-entropy loss while assessing real data and maximizes

when working on generated or synthetic datasets.

GANs are quite remarkable with this training process. We now move to a few variants

of GAN and some applications.

10.4.4 Variants and applications of GANs

GANS are useful for specific challenges and problems. This has also led to some of the

prominent variants that follow:

 Conditional GAN—These models take additional information (e.g., class labels)

as input to control the generated data’s attributes.

 Deep convolutional GANs—Optimized for image generation, deep convolutional

GANs use convolutional layers to generate high-quality images.

 CycleGANs—Used for style transfer and image-to-image translation, these mod-

els learn to map images from one domain to another.

 BigGAN and StyleGAN—These models produce high-resolution images and

offer advanced control over image styles and attributes.

Next, we briefly cover the latest technological solutions available—for example, Bidi-

rectional Encoder Representations from Transformers (BERT), GPT-3, and others.

10.4.5 BERT, GPT-3, and others

BERT, GPT-3, and other models are prominent examples of advanced NLP tech-

niques that have revolutionized the field of AI. These models have made significant

strides in understanding and generating human-like text and enabling various appli-

cations in language understanding, translation, text generation, and more.

 Developed by Google in 2018, BERT is a transformer-based model designed for

understanding the context of words in a sentence. Unlike previous models, which

read text sequentially, BERT can consider the context of each word by processing text

bidirectionally. BERT is pretrained on a massive amount of text data and can be fine-

tuned for specific NLP tasks like sentiment analysis, question answering, and named

entity recognition. BERT’s pretraining has significantly improved the performance of

many NLP tasks, making it a foundational model in the field.

 GPT-3, developed by OpenAI, is one of the most famous language models. It was

released in 2020 and is the third iteration of the GPT series. GPT-3 is a generative model

capable of producing human-like text. It is pretrained on a massive corpus of text data

and can generate coherent and contextually relevant text when given a prompt. It can

also perform a wide range of NLP tasks, including text completion, language transla-

tion, and text summarization and can even engage in text-based conversations.

28710.5 ChatGPT and its details

 Text-to-Text Transfer Transformer (T5) is another transformer-based model, devel-

oped by Google in 2019. It is unique because it frames all NLP tasks as a text-to-text

problem. T5 is pretrained on a variety of text data and can be fine-tuned for various

NLP tasks, including text classification, translation, and summarization, making it a

versatile model for NLP tasks.

 XLNet was developed as a successor to BERT and introduced a permutation-based

training approach. It considers all possible permutations of words in a sentence

during training, enabling it to model complex language dependencies more effec-

tively. XLNet has shown strong performance on various NLP benchmarks and tasks.

 RoBERTa is another model that builds upon BERT’s architecture, developed by

Facebook AI in 2019. It optimizes BERT’s pretraining methodology and achieves state-

of-the-art results on multiple NLP benchmarks.

 The transformer architecture, originally introduced in the paper “Attention Is All

You Need” by Vaswani et al. (https://arxiv.org/abs/1706.03762), forms the founda-

tion of many of these models. It relies on self-attention mechanisms to process and

generate text data.

10.5 ChatGPT and its details

ChatGPT is an advanced AI model designed to engage in natural and dynamic conver-

sations with users, making it a pivotal development in the field of AI. Developed by

OpenAI, ChatGPT is built upon the GPT-3.5 architecture, which is known for its

capacity to understand and generate human-like text.

10.5.1 Key features of ChatGPT

The key features of ChatGPT are as follows:

 Natural language understanding—ChatGPT comprehends and generates text in a

manner that closely resembles human communication, making interactions

with it feel more intuitive and engaging.

 Contextual awareness—The model can maintain context throughout a conversa-

tion, remembering previous messages and providing coherent responses,

enabling more meaningful and flowing dialogues.

 Multilingual capabilities—ChatGPT can communicate in multiple languages,

expanding its utility and accessibility to a global audience.

 Customization—It can also be fine-tuned to perform specific tasks, such as draft-

ing emails, answering FAQs, or offering tutoring, making it versatile for various

applications.

10.5.2 Applications of ChatGPT

Applications of ChatGPT include the following:

 Customer support—ChatGPT can be used to provide 24/7 customer support,

answering queries, troubleshooting problems, and ensuring a high level of user

satisfaction. It can be hence used as a chatbot and can serve as a virtual assis-

tant, helping users with scheduling, reminders, and information retrieval.

https://arxiv.org/abs/1706.03762

288 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

 Research and development—Researchers can employ ChatGPT to sift through vast

amounts of data and generate reports or summaries, saving time and effort.

 Content generation—It can assist content creators by generating blog posts, mar-

keting materials, or creative writing prompts.

 Education—It can also offer personalized tutoring and answer students’ ques-

tions, enhancing the learning experience.

While there are many applications of ChatGPT, there is an ethical consideration too.

The use of ChatGPT must prioritize user privacy, with measures in place to protect

sensitive information shared during conversations. Monitoring and supervising

ChatGPT’s interactions may be necessary to ensure responsible usage. Developers

must work diligently to reduce biases and the potential to generate false or harmful

information in responses. Developers, organizations, and users should collectively

hold ChatGPT accountable for its actions and output.

 Next we discuss the integration of GenAI in some real-world business applications.

This will give you a view on how you can employ these technologies in the pragmatic

business world.

10.6 Integration of GenAI

Integrating GenAI into real-world business involves a systematic process that requires

careful planning and consideration. Consider the following step-by-step guide on how

to integrate GenAI effectively:

1 Set the objectives and business problem definition. First, we should define the specific

objectives and use cases for GenAI within our business priorities. This requires

determining where it can provide the most value—whether that’s customer sup-

port and solutions, data analysis/visualizations, personalization, content gener-

ation, or others.

2 Evaluate the data available and the infrastructure. Next, we should check the data

available and assess its quality and quantity. High-quality data is essential for

training and maintaining GenAI models. We also must ensure that our IT infra-

structure can support the integration of AI systems.

3 Select the model. We then choose to develop a custom GenAI model or to use an

existing pretrained model. If we decide to build a custom model, we will have to

consider working with AI development teams or external vendors with exper-

tise in the field. This is a vital step, as we should choose teams that have the

required skills to develop the models. It is better to take recommendations

from the experts in the field.

4 Perform data collation, preprocessing, and preparation. Data is the protagonist here,

and the next step is to gather and preprocess the data necessary to train the

GenAI model. This may involve cleaning, labeling, and structuring the data for

training. Data preprocessing is a critical step for model accuracy. The data

should be representative of the business problem at hand.

28910.7 Concluding thoughts

5 Train the model. We next train the GenAI model using the preprocessed data.

This process may require powerful hardware and deep learning expertise.

There might be some iterations to the model to align with our specific business

requirements. This step can take a lot of time, depending on the quantity of the

data, the quality of the infrastructure, and the complexity of the solution.

6 Test, validate, and tweak. We then test the GenAI system to ensure that it func-

tions as expected. This will involve validating its performance on real-world

data and use cases. A few variables to keep in mind are accuracy, response

times, and user experience.

7 Perform user education and training. GenAI will be used by employees, customers,

or other stakeholders; hence, we have to provide training and educational

materials on how to use the AI system effectively.

8 Consider compliance and privacy. It is vital to develop guidelines and policies for

the responsible use of GenAI, addressing problems like privacy, bias, and com-

pliance with relevant regulations. We have to ensure that the AI system aligns

with our organization’s ethical standards.

9 Perform maintenance. As our business grows, the demand on GenAI may increase.

We have to regularly update the model with fresh data to keep it accurate and

effective. We should always plan for scalability and ongoing maintenance. It is

important to implement monitoring systems to track GenAI’s performance and

user feedback. This information can help us in making continuous improve-

ments and address any problems that arise.

10 Adapt, innovate, and improve. We should continuously evaluate the return on

investment of this GenAI integration by determining whether the expected

benefits are being realized and adjust as needed. It is important that we stay

abreast of advancements in AI technology and continually adapt and innovate

our GenAI integration to remain competitive and efficient.

Integrating GenAI into your business is a complex process that involves multiple steps

and ongoing efforts. Successful integration requires a clear strategy, a commitment to

responsible AI use, and a focus on delivering value to our organization and its

stakeholders.

10.7 Concluding thoughts

GenAI is an exciting and ambitious frontier in AI research. While it represents a long-

term goal, the pursuit of creating highly adaptable and versatile AI systems has the

potential to revolutionize the way we interact with technology and address a wide range

of challenges. However, it also comes with ethical and societal responsibilities that need

careful consideration and regulation as we move forward in AI development.

 ChatGPT is a remarkable AI model with the potential to revolutionize human-com-

puter interactions. As it continues to evolve, the responsible use and development of

ChatGPT will be essential to harness its full potential while addressing ethical and

practical concerns. Whether it’s in customer service, content generation, education,

290 CHAPTER 10 Generative adversarial networks, generative AI, and ChatGPT

or research, ChatGPT is poised to transform the way we engage with AI, bringing us

closer to more intuitive and seamless communication with machines.

10.8 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 See the first paper on GANs: Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.

(2014). Generative Adversarial Networks. https://arxiv.org/abs/1406.2661

 Study the following papers:

– Kingma, D. P., and Welling, M. (2013). Auto-Encoding Variational Bayes.

https://arxiv.org/abs/1312.6114

– Arici, T., and Celikyilmax, A. (2016). Associative Adversarial Networks.

https://arxiv.org/abs/1611.06953

 If you want to study Bayesian GAN, see Saatchi, Y., and Wilson, A. J. (2014).

Bayesian GAN. https://arxiv.org/abs/1705.09558.

Summary

 AI seeks to emulate human intelligence and has evolved significantly since the

1956 Dartmouth Workshop, where the term “artificial intelligence” was coined.

 Initially focused on symbolic AI, the field slowed during the 1970s and 1980s

but was revitalized in the late 20th century with machine learning advances.

 The rise of cloud computing and libraries like TensorFlow shifted AI from rule-

driven to data-driven algorithms, enhancing its accessibility.

 AI affects various sectors including finance, aviation, and manufacturing,

improving efficiency, decision-making, and cost reduction.

 GenAI distinguishes itself by generating data, underpinning technologies like

GPT, and benefitting domains like NLP and healthcare.

 GenAI creates synthetic data, enhancing machine learning models by expand-

ing dataset quality and reducing overfitting risks.

 Discriminative models are data classifiers, while generative models learn data

distribution to create new, similar data points.

 GANs, featuring generator and discriminator networks, progressively improve

data realism through adversarial training.

 GAN variants, such as CycleGAN and StyleGAN, address tasks like style transfer

and high-resolution image generation.

 Natural language models like BERT and GPT-3 have advanced NLP capabilities,

offering solutions for translation and conversational AI.

 ChatGPT, based on GPT-3.5, excels in generating human-like conversational

text, finding use in customer support and content generation.

 Integrating generative AI into business requires careful planning, data prepara-

tion, model training, and continual evaluation for success.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.06953
https://arxiv.org/abs/1705.09558

291

End-to-end model
deployment

The journey is the destination.

—Dan Eldon

The path to learning never ends. It takes a lot of courage, patience, and hard work

to learn something. We have to be persistent, resourceful, and always looking for

opportunities to learn and excel.

 Across all of the chapters so far, you have covered a lot of concepts, techniques,

and algorithms. In this last chapter of the book, we are going to discuss the end-to-

end model deployment process. We will cover various aspects ranging from a busi-

ness problem definition, data cleaning, and exploratory data analysis (EDA) to

model deployment and maintenance. This end-to-end journey is crucial for you to

appreciate the entire process. We will discuss Python codes at all the relevant places.

 Welcome to this last chapter, and all the very best!

This chapter covers

 The end-to-end model deployment process

 Maintenance of the model postdeployment

 Python codes for each of the steps

292 CHAPTER 11 End-to-end model deployment

11.1 The machine learning modeling process

Recall in chapter 1 we briefly discussed end-to-end model development. In this sec-

tion, we cover each of the respective steps in detail and the most common problems

we face with each of them and how to tackle them. It will finally lead to the model

deployment phase. Figure 11.1 shows the model development process we follow.

Figure 11.1 The complete machine learning modeling process

The steps in the model development process are as follows:

1 Business problem definition

2 Data discovery and feasibility analysis

3 Data cleaning and prepreparation

4 Exploratory data analysis

5 Modeling process and business approval

6 Model deployment

7 Model documentation

8 Model maintenance and model refresh

Throughout this chapter, we will cover each of these processes in much more detail.

These are all relevant to the modeling process.

11.2 Business problem definition

Your business problem definition is the very first step. It is vital that the business prob-

lem is concise, clear, measurable, and achievable. Many times, in practice, the business

Data science project steps

Data
input

Survey

Data
preprocessing

Model
dataset

Archetype segmentation

Identify clusters within
data

Bayesian belief networks

Identify variable change
implication

Text mining using
cosine-similarity

Identify key factors
in user experience

Business outcome

• Extracted segments
 based on customer
 buying habits
• Variable dependency
 graphs and their
 implication on sales

C5

C4

C2

C1

C3

29311.2 Business problem definition

problem is vaguely defined, such as “decrease the costs or increase the revenue,”

which often leads to poor results throughout the rest of the process. A good business

problem is defined clearly with key performance indicators (KPIs) and parameters

that can be used to measure the effect. A good business problem ensures there is no

ambiguity, the goal is clear, and we can achieve it with the available resources and

within the timeframe.

 Some of the most important considerations regarding a business problem are as

follows:

 If a business problem is vaguely defined, it is going to cause problems and

should be avoided. For example, all of the businesses and various functions

would want to increase their revenue and profits, reduce costs, optimize various

processes, and so forth. With a vague business problem, we will not have clarity

on the process, which will lead to ambiguity.

 The business purpose should be practically achievable. Unrealistic goals like dou-

bling the revenue or halving the cost should not be set. Unrealistic goals mean

that good results might get rejected, as they do not meet the business targets.

 The business problem should be measurable if possible. If the business prob-

lem is only qualitative, then it will be of limited help. We won’t be able to under-

stand the real effect of the machine learning model created.

 Scope creep is one of the problems we face sometimes. Scope creep happens

when at the start of the project, during project building, the scope is changed

drastically, changing the requirements and time needs of the project without

changing resources and deadlines accordingly.

An effective business problem is defined correctly, completely, and in discussion with

the business teams. It is concise with measurable KPIs and is achievable within a given

timeframe.

NOTE Business stakeholders and subject matter experts should be involved in
defining the business problems. They should be a part of the team from the
start and own the overall process.

A few examples of a good business problem are as follows:

 The marketing team in an organization aims to optimize the various costs and

maximize the return on investments. They want to identify the optimal combi-

nations of marketing efforts (email, calls, TV advertising, and meetings) to

increase the return on investment by 1.5% in the next six months.

 A manufacturing team faces an increase in the number of defects in the last

three months. The business problem can be to identify all the potential reasons

for such an increase in defects. The team also wishes to know if there is a trend

or pattern. The business goal may be to shortlist the most significant reasons for

defects and reduce them by 2.5% in the next six months.

We have described the attributes of a business problem. We now move to the next

phase, which is data discovery and feasibility.

294 CHAPTER 11 End-to-end model deployment

11.3 Data discovery and feasibility analysis

The data discovery phase is one of the most important steps in the entire model build-

ing process. If there is not enough data, both quantitatively and qualitatively, it might

be very difficult to create the solution we desire. At the same time, having access to

this data is of paramount importance.

 During this process, we also do the feasibility analysis for the project:

1 The data is the protagonist. The very first step is the identification of the data-

sets required for the business problem use case and mechanisms for its access

by all the stakeholders. For this reason, it is advisable that

– The dataset is available from servers or clouds and relevant permissions are

set correctly to the people who need access. The servers can access the data

from a database such as SQL/MySQL/NoSQL/MongoDB.

– If the data is in Excel/.csv/text files, it will be useful to make it available on

the server. In recent times, cloud servers like AWS, Azure, Google Cloud,

etc., are used for storing the data.

2 It is imperative to check that the dataset is complete and relevant to the busi-

ness problem. The dataset should be representative enough of the business

problem at hand and capture all the variability in the business. The time and

duration of the data is another important dimension we should bear in mind.

For example, if we wish to analyze the business of a telecom operator or a retail

company, we should have enough data (for at least the last year so that we cap-

ture seasonality as well) and variables around sales, transactions, discounts,

products/services purchased, marketing behaviors, historical behaviors,

offline/online purchases, etc.

3 It is prudent to plan the data refresh at this stage. After all, once the model is

built, we will have to maintain it and refresh it.

During this phase, the most common problems we can face are as follows:

 We might find that there are certain missing values, outliers, etc., in the dataset.

We will cover that in detail in the next section.

 We must also ensure that correct business rules are applied on the dataset. The

steps to ensure it are

– Get the relevant dataset for the business problem.

– Make some basic analyses like total sales, number of customers, month-wise

trends, discounts, etc.

– Get these KPIs verified by the business stakeholders. If the numbers are

wrong, the business rules are refined.

Only once the data is correct and the numbers are accurate can we move on to the

feasibility analysis for the use case. For the feasibility analysis, we do the following:

1 Check the data quality in detail. We cover the various aspects in the next

section.

29511.5 Duplicate values in the data

2 Analyze the data for any patterns, such as seasonality, etc. We also check if there

are any correlations present among various variables to ensure which variables

are related to each other.

3 Check for relationships between the business problem and the dataset. This is

followed by an exploratory analysis to identify if there is any significant differ-

ence between various customer groups.

After this step, we go to the data cleaning, preprocessing, and data preparation step.

This is one of the most time-consuming steps we have to do.

11.4 Data cleaning and prepreparation

In the last step, we shortlisted the data for the business problem. Now we will go to the

data cleaning and preprocessing phase of the modeling process.

 Data in its original form might not be usable enough to be fed to the machine

learning model. We have to create a few additional variables and treat some others. In

the real business world, the dataset is generally “dirty.” There can be many problems

that can be present in the data, which are as follows:

 Duplicate values

 Categorical variables (may cause some problem for certain algorithms)

 Missing values, NULL, or not a number (NaN), etc.

 Outliers

 Other problems (as described in previous chapters)

Let’s deal with each of these things in turn. The code for this chapter has been

checked in at https://mng.bz/vKY7. You can access the code and datasets there. We

will now work on how to deal with duplicate values in a dataset.

11.5 Duplicate values in the data

Duplicates are often a problem in datasets. If there are two rows in the dataset that are

a complete copy of each other, they are duplicates in nature. This problem might

occur during data-capturing time. The problem with duplicates is that the statistics

will be affected—for example, by making some events appear to be more frequent

than they are. When removing duplicates, one needs to pay attention to not removing

genuine data of events that happened twice—for example, a customer purchasing an

item twice at two different times or a customer purchasing two identical items at the

same time versus the transaction of the purchase being recorded twice.

 The following are the steps of a simple Python program to remove duplicates (see

figure 11.2):

1 Import numpy and pandas.

2 Define a dataframe with some dummy variables.

3 Print the dataframe.

4 There is an inbuilt method: drop_duplicates(). Use it to drop the duplicates.

5 Print the dataframe and find that the duplicate rows have been dropped.

https://mng.bz/vKY7

296 CHAPTER 11 End-to-end model deployment

Figure 11.2 Removing duplicates in a simple Python program

11.6 Categorical variables

The next step is treating the categorical variable. Let’s revisit the definition of categor-

ical variables. Variables like gender, city, product categories, zip codes, etc., are exam-

ples of categorical variables. Categorical variables may not strictly be a problem in the

data, but they can create problems for certain algorithms like k-means clustering.

Recall that for k-means clustering, the distance needs to be calculated between the

data points.

 In certain datasets, a categorical variable can have nearly all values as the same. For

example, if the whole dataset is for the UK and a variable is “city,” since a significant

percentage of the population lives in London, then this variable might be of limited

benefit. It will not create any variation in the dataset and will not be useful. Similarly, a

categorical variable like “zip code” can have all the values as distinct and will not add

much to the analysis.

 Perhaps the most common method to deal with categorical variables is using one-

hot encoding. In one-hot encoding, as shown in the Python code book, the variable

gets transformed:

1 Use the same dataset we used in the last code.

2 There is a built-in method in pandas, get_dummies(), which can be used for

converting categorical variables to numeric ones. See figure 11.3.

29711.7 Missing values in dataset

Figure 11.3 The output of the code when executed

11.7 Missing values in dataset

One of the most common challenges in real-world datasets is missing values, which

might be blank, NULL, NaN, etc. It might be due to a data capturing problem or data

transformation. Missing values should be treated to ensure a robust solution. There

can be a few reasons for missing values:

 The values were not recorded properly during data capturing. This can be due

to faulty equipment or a manual error when recording the data.

 Many times, nonmandatory fields are not entered. For example, a customer

might not enter age while filling out a retail loyalty form.

 Survey responses might not be completely filled out—for example, salary

details.

To mitigate the missing values, there are a few options:

 First, we should check if the data is missing by design and whether it is a prob-

lem that needs to be addressed. For example, it is possible for a sensor to not

record any temperature values above a certain pressure range. In that case, hav-

ing missing values of temperature is correct.

 We should also check if there are any patterns in the missing values with respect

to the other independent variables and with respect to the target variable. For

example, in the dataset used in the next example we can deduce that whenever

the value of temperature is NULL, then the equipment has failed. In such a

case, there is a clear pattern in this data between temperature and the failed

equipment. Hence, it will be the wrong step to delete the temperature or treat

the temperature variable.

298 CHAPTER 11 End-to-end model deployment

 Perhaps the easiest approach to deal with missing values is to delete the rows

that have missing values. Though this is simple and fast, it reduces the size of

the population and can delete very important pieces of information, as

described earlier, or, for example, if a person has a legitimate last name that is

not available. Hence, we should be careful deleting rows.

 We can impute the missing values by the mean, median, or mode values. Mean

or median are only possible for continuous variables. Mode can be used for

both continuous and categorical variables.

 There are also other popular methods for imputing the missing values like

using k-nearest neighbor and multivariate imputation by chained equation.

We now use Python to impute missing values. We will use the built-in method

SimpleImputer and impute the missing values with the mean. The second solution is

for the categorical variables, where the mode is used to replace the missing values. See

figure 11.4.

Figure 11.4 The output of the code when executed

29911.9 Exploratory data analysis

In the next solutions, we will use IterativeImputer and the k-nearest neighbor

algorithm.

11.8 Outliers present in the data

Outliers can be a big problem in the data. Consider this: let’s assume that average

rainfall for a city is 50 cm. But one particular year, due to heavy rains, the average rain-

fall is 100 cm. This data point would be an outlier and will completely change the

analysis results should it be included. In the example, depending on whether the year

of heavy precipitation is included or not in the statistical analysis, the results (say, of

likely insurance claims) would be very different.

 Therefore, like missing values, outliers may not necessarily be an error. We should

apply business acumen to infer if the data points are really outliers for the problem

under study.

 We can detect outliers in the following ways:

 If a data point lies beyond the 5th percentile and 95th percentile or 1st percen-

tile and 99th percentile, it can be considered an outlier.

 A value that is beyond –1.5 × interquartile range (IQR) and +1.5 × IQR can also

be considered an outlier. Here IQR is given by (value at 75th percentile) –

(value at 25th percentile).

 Values beyond one, two, or three standard deviations from the mean can be

termed outliers.

We can create charts and visualize outliers. We can treat outliers by using the following

methods:

 A data point beyond the 5th percentile and 95th percentile can be capped at

the 5th percentile and 95th percentile, respectively. Or a data point beyond the

1st percentile and 99th percentile can be capped at the 1st percentile and 99th

percentile, respectively.

 Replacement by mean, median, or mode is also used sometimes.

 Sometimes taking a natural log of the variable reduces the effect of outliers. But

since a natural log will change the actual values, we should use sound mathemat-

ical models for the problem under investigation to make sure it’s appropriate.

Outliers pose a big challenge to our datasets. They skew the insights we have gener-

ated from the data. Sometimes this skew is appropriate (e.g., the insurance claims of

an outlier heavy precipitation year, which the insurance company needs to take into

account). In any case, it becomes important that we at least highlight outliers in the

dataset and sometimes modify them.

11.9 Exploratory data analysis

EDA is one of the most crucial steps before we start modeling. Using EDA, we gener-

ate insights that are quite useful for the business. The insights generated from the

EDA conform to the modeling outputs too.

300 CHAPTER 11 End-to-end model deployment

 In EDA, we examine all the variables and understand their patterns, interdepen-

dencies, relationships, and trends. During the EDA phase, we come to know how the

data is expected to behave. We uncover insights and recommendations from the data

at this stage. A strong visualization complements the complete EDA.

NOTE EDA is the key to success; many times, a good EDA can solve the busi-
ness problem.

Next we perform a detailed EDA on a dataset using Python. The entire code is quite

big for a book; hence, the Python notebook has been checked in to the GitHub repos-

itory (https://mng.bz/vKY7) with full explanations and comments.

11.10 Model development and business approval

We have already covered the modeling process in detail throughout the book. This

includes creating the first version of the model and then iterating with different

hyperparameters and with different algorithms.

 Throughout the book, we have covered a lot of algorithms on clustering and dimen-

sionality reduction methods. We also covered modeling for the text datasets. During

the model development phase, based on the business problem and dataset at hand, we

choose the candidate algorithms. We always strive to select the best algorithm based on

the accuracy measurement parameters we have discussed in earlier chapters.

 The output of the modeling process is the final algorithm that delivers the best

output for the business problem at hand. After a model with satisfactory performance

is found, we should have a discussion with the business stakeholders for their final

feedback. There might be a few iterations required to further improve the model.

 Now, you have a model that is statistically significant, useful, and approved by the

business stakeholders. We can move on to the model deployment stage.

11.11 Model deployment

A critical stage in the development of AI and machine learning models is model

deployment. It is the changeover point between the development and production

environments, where the model is used for real-world business purposes. There are

many facets to be considered, like infrastructure concerns, deployment methodolo-

gies, monitoring, and maintenance. We discuss the challenges and recommended

steps related to model deployment, with a methodical and organized strategy to put

the models into production.

11.12 Purpose of model deployment

Model deployment is a crucial process. The primary reasons for model deployment

are given as follows:

 Deployment of a model leads to the transformation of insights into actionable

and practical purposes. The model is used for making predictions, optimiza-

tions, recommendations, and suggestions.

https://mng.bz/vKY7

30111.13 Types of model deployment

 The deployed models are integrated with the business processes and workflows.

This facilitates the automation of various processes and business functions

based on the insights and recommendations made by the model.

 Real-time predictions ensure that the business is responding quickly to the ever-

changing business conditions. Real-time predictions are particularly useful for

scenarios like credit card fraud detection in transactions, dynamic pricing, etc.

 Optimization and automation are enhanced. Model deployment leads to a

decrease in the efforts of the employees by automating the business functions.

With the help of deployed models, hardware use is optimized, business func-

tions and processes are made more efficient, and the overall return on invest-

ment is increased.

 With deployed models, the versioning of the models can be done. This ensures

that the organization can track changes, perform A/B tests, and even perform

rollback if required.

In summary, the purpose of model deployment is to translate the potential of

machine learning models into practical applications, making them an integral part of

business operations and decision-making processes. Deployment enables organiza-

tions to harness the power of AI and data science to derive value from their models in

real-world scenarios.

11.13 Types of model deployment

There are several types of model deployments. Based on the requirements and the

strategic objectives, we can choose between them. The various types of deployment

strategies are

 Batch deployment—This methodology is used when we have a large dataset that

has been collected over a period of time and we need to use the machine learn-

ing model to assess this data and make predictions in an offline mode. Gener-

ally, the processing is done in large batches. For example, if we want to cluster

the customers of a retail store based on k-means clustering, we can take their

attributes for the last two years and generate a corresponding cluster for each

customer. We can refresh the underlying data after one month, and hence we

can reassign these clusters.

 Real-time deployment—Consider this: we want to check if the incoming credit

card transaction is genuine or fraudulent. In such a scenario, we use a real-time

check. The predictions are generated in real time based on the latest informa-

tion available. Generally, to support real-time predictions, we should employ a

multithreaded process so that multiple prediction requests can be handled at

the same time. For example, there can be hundreds of credit card requests

made simultaneously, which our system needs to classify with very little latency.

 Edge deployment—Nowadays, people expect smartphones or Internet of Things

devices to have sophisticated features that are a good fit for a machine learning

or AI algorithm. In such a scenario, a deployment in the cloud is possible, but

302 CHAPTER 11 End-to-end model deployment

edge deployment is also used when an internet connection is not available. The

prerequisite for edge deployment is that the machine learning model should be

small in size and require less computation to facilitate running it on the devices

with limited resources.

 Canary deployment—In canary deployment, we release the model to a subset of

users before we make a full-scale deployment for all users. This ensures that an

unstable version is not released to all users as we will get the feedback from the

test users in the first phase. This is typically done by large companies with a

huge number of users providing services through the cloud, such as Google or

Facebook.

 A/B testing—A/B testing is not actually a model deployment technique, but it

can be used as one and that is why it is listed here. In A/B testing, organizations

want to test how one solution/service/product compares with another. For

example, if the product team wishes to test which of the two offers delivers bet-

ter profitability, they will use A/B testing. The example of two offers can be

“spend $100 and get a 15% discount” or “spend $50 and get a 10% discount.”

In such a scenario, there can be two similar groups of customers that will

receive these offers, and we will check which one delivers better profitability. In

A/B testing deployments, two different models (or the same model with differ-

ent hyperparameters) are tested against each other.

11.14 Considerations while deploying the model

There are quite a few factors we should keep in mind while deploying the model to

ensure smooth and effective transition from development of the model to deployment:

 Accuracy monitoring—We should constantly monitor the performance of the

model and improve it if the performance falls below a threshold. We should

cover key metrics like accuracy, resource utilizations, time, and accuracy.

 Scalability—A solution should be scalable to other departments or brands. Even

the volume of the data can increase with time.

 Security and compliance—This is one consideration that cannot be compromised

at all. Any kind of deployment should be completely secure from any threats

and fully compliant with the existing best practices, policies, and requirements.

 Model drift and data drift—These should be monitored because the overall busi-

ness scenario can change. Customers, their preferences, the market, and the

overall economy may change. There are events like COVID, war, floods, etc.,

and hence there is a data drift. It results in a model’s performance change too.

Hence, we should plan for model drift in advance.

 Reproducibility—Reproducibility of the results is an important factor when we

deploy the models. We should be able to replicate the results.

 Continuous integration and continuous deployment—These pipelines are required

to automate the testing and the deployment process. This reduces the risk of

errors and ensures smooth deployments.

30311.16 Model maintenance and refresh

 User feedback and successive iterations—These are very important for a successful

project. While planning for the deployment, we should give due diligence to

incorporating users’ feedback and the iterations in the model.

 Versioning and rollback—No model is ever final. There are successive iterations to

it. In the infrastructure, there should be a provision to roll back to the previous

version if the new version has any problems or if there are reasons based on the

business requirements.

With this, we have covered all the considerations in model deployment. We will now

deploy a model using Flask. The entire code has been uploaded to the GitHub reposi-

tory (https://mng.bz/vKY7) with full comments and explanations.

11.15 Documentation

Our model is deployed. Now we ensure that all the code snippets are cleaned, are

properly commented, and adhere to best practices. The code files should be checked

in and properly documented. Documentation is often (unfortunately) not given

enough time, but it is a very important step that should not be ignored. Should priori-

ties be set in writing in the documentation, precedence should be given to the aspects

more likely to change and to those that require understanding and interaction with

external stakeholders.

 There are quite a few tools for version controlling of the code. Git is perhaps the

most common one. It is a very good practice to ensure that all of our code is checked

in regularly to safeguard ourselves from any potential computer failures. For docu-

mentation, we do have a lot of options available in the industry, ranging from Word to

PowerPoint to Confluence pages, depending on the industry we work in.

11.16 Model maintenance and refresh

So far, we have covered all the stages of model development and deployment. But

once a model is put into production, it needs constant monitoring. We must ensure

that the model is always performing at the desired level of accuracy. To achieve this, it

is advised to have a dashboard or a monitoring system to gauge the performance of

the model regularly. In case of nonavailability of such a system, a monthly or quarterly

check-up of the model can be done.

 Once the model is deployed, we can do a monthly health check of the model. It

means that we compare the performance of the model with the expected accuracy. If

the performance is not good, the model requires a refresh. Even though the model

might not be deteriorating, it is still a good practice to refresh the model on new data

points that are constantly created and saved. The model refresh is generally based on

the business problem as well as the business domain for which the model has been

built. For example, in the telecom domain, data updates are faster as customers use

their mobile phones daily. On the other hand, for retail apparel, we don’t expect cus-

tomers to buy clothes every day. Hence, the model for the telecom domain can be

refreshed weekly or biweekly, while for apparel, we can refresh once a quarter or once

every six months.

https://mng.bz/vKY7

304 CHAPTER 11 End-to-end model deployment

 Model refresh is quite an important phenomenon. Our business scenarios are

always dynamic in nature. The customers’ preferences and lifestyles will change, and

there’s always some activity being done by the competitor. There are certain scenarios

that are beyond our control, like war, COVID, etc. Hence, we always should strive to

adjust our models to the latest scenario in our business.

 Model refresh means that we are retraining the model based on the new data

points we have collected. It ensures that we are capturing the latest trends, back-

grounds, and emerging relationships in the data, and hence our models are able to

predict, optimize, and expedite the latest data points.

 With this we have completed all the steps to design a machine learning system:

how to develop it from scratch, how to deploy it, and how to maintain it. It is a long

process that is quite tedious and requires teamwork.

11.17 Concluding thoughts

End-to-end machine learning development is quite a time-consuming one. From

scratch to maintenance, it requires a lot of planning, teamwork, business knowledge,

and effort. In this chapter, we have covered a lot of those steps. There can be other

possible solutions too, which are dependent on the business domain and the

requirements.

 With this we come to the close of this book. We all read and feel that in this new

age, data is the new oil, new electricity, new power, and new currency. The field is rap-

idly growing and making its effect felt across the globe. The pace of enhancements

and improvements has opened new job opportunities like data engineers, data scien-

tists, visualization experts, machine learning engineers, MLOps, DevOps, GenAI

experts, and so on, with demand increasing day by day. But there is a dearth of profes-

sionals who fulfill the rigorous criteria for these job descriptions. The need of the

hour is to have data artists who can marry business objectives with analytical problems,

envision solutions to solve the dynamic business problems, adjust to the ever-changing

technical landscape, and yet deliver cost-effective business solutions.

 More sophisticated systems are being created every day. We can see examples of

self-driving cars, human chatbots, fraud detection systems, facial recognition solu-

tions, object-detection solutions, optimization and monitoring solutions, etc. The use

of GenAI has further enhanced the effect.

 At the same time, there are some risks too, which we should be aware of. The onus

lies on humankind regarding how to harness this power of data. There are instances

where (if we believe the claims made) AI has been used for rigging election results or

DeepFake has been used for morphing pictures of people or profiling people based

on race/color etc. We can use machine learning and AI to spread love or hatred–it is

our choice. And like the cliché goes: with great power comes great responsibility!

 We sincerely hope you enjoyed the book. Congratulations, and all the very best for

your next steps!

305Summary

11.18 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:

 Go through these two research papers on model deployment:

– Paleyes, A., Urma, R-G., and Lawrence, N. D. (2020). Challenges in Deploy-

ing Machine Learning: a Survey of Case Studies. https://arxiv.org/abs/

2011.09926v2

– Sculley, D., Holt, G., Golovin, D., et al. (2015). Hidden Technical Debt in

Machine Learning Systems. https://mng.bz/4azw

 Use the datasets we have developed in the last few chapters and perform EDA

on those datasets.

Summary

 The journey of learning is ongoing, requiring courage, patience, and diligence;

understanding the entire process from conceptualization to model deployment

is essential for mastering machine learning.

 The end-to-end model deployment process involves key steps such as business

problem definition, data cleaning, and EDA and culminating in model deploy-

ment and maintenance.

 The machine learning modeling process includes distinct stages such as busi-

ness problem definition, data discovery and feasibility analysis, data preprepara-

tion, EDA, modeling, deployment, documentation, and maintenance.

 Clear and achievable business problem definition is crucial to align goals effec-

tively, prevent scope creep, and ensure that KPIs are measurable to assess the

model’s effect.

 Data discovery involves identifying necessary datasets, ensuring access and com-

pleteness, and analyzing feasibility, with particular attention to data relevance,

quality, and representation.

 Data cleaning and prepreparation address common problems like duplicates,

categorical variables, missing data, and outliers, utilizing various techniques to

prepare the dataset for effective modeling.

 EDA is key to understanding data patterns and relationships and generating

actionable insights, laying the groundwork for successful model development.

 The model development phase uses algorithms suitable for the business prob-

lem and requires stakeholder collaboration for refinement.

 Model deployment bridges development and production, necessitating consid-

erations for infrastructure, real-time applications, scaling, security, and continu-

ous integration to optimize model utility.

 Types of model deployment include batch, real-time, edge, canary, and A/B

testing, each offering different advantages based on strategic objectives and

application contexts.

https://arxiv.org/abs/2011.09926v2
https://arxiv.org/abs/2011.09926v2
https://mng.bz/4azw

306 CHAPTER 11 End-to-end model deployment

 Effective deployment involves accuracy monitoring, detecting model and data

drift, securing compliance and data, and ensuring reproducibility and scalability.

 Postdeployment, thorough documentation and version control are vital for

code integrity and facilitating future iterations or rollbacks when necessary.

 Model maintenance involves regular performance checks and refreshes, adapt-

ing to dynamic business environments and ensuring alignment with evolving

data trends.

 Data-driven solutions have vast potential but also an equally high duty of

responsible use. We wrap up this book by stressing the importance of ethical

application.

307

appendix A
Mathematical foundations

A.1 List of clustering algorithms

A.1.1 Partitioning-based algorithms

 k-means

 k-medoids (PAM)

 CLARA (Clustering Large Applications)

 CLARANS (Clustering Large Applications based on Randomized Search)

 Mini-Batch k-means

 Fuzzy C-Means (FCM)

 k-modes

 k-prototypes

A.1.2 Hierarchical clustering

 Agglomerative Hierarchical Clustering

 Divisive Hierarchical Clustering

 BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

 CURE (Clustering Using Representatives)

 Chameleon

 ROCK (Robust Clustering using Links)

 HIERDENC (Hierarchical Density-Based Clustering)

 HAC-S (Hierarchical Agglomerative Clustering with Spatial Constraints)

 EAC (Ensemble Agglomerative Clustering)

A.1.3 Density-based algorithms

 DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

 OPTICS (Ordering Points To Identify the Clustering Structure)

308 APPENDIX A Mathematical foundations

 HDBSCAN (Hierarchical DBSCAN)

 DENCLUE (Density-Based Clustering)

 Mean Shift

 VDBSCAN (Variable Density-Based Spatial Clustering)

 DBCLASD (Distribution-Based Clustering of Large Spatial Databases)

 LDBSCAN (Labeled DBSCAN)

A.1.4 Grid-based algorithms

 STING (Statistical Information Grid)

 WaveCluster

 SUBCLU (Subspace Clustering)

 GRIDCLUS (Grid-based Clustering Algorithm)

 OptiGrid

 CLIQUE (Clustering in Quest)

A.1.5 Model-based algorithms

 Gaussian Mixture Model (GMM)

 EM (Expectation Maximization) Algorithm

 DBEM (Density-Based EM)

 Bayesian Gaussian Mixture Model

 Hidden Markov Model (HMM) Clustering

 X-Means (Extended k-means)

 G-Means (Gaussian Means)

 MCLUST (Model-based Clustering using EM)

 AUTOCLASS (Bayesian Model-based Clustering)

 Mixmod (Mixture Models for Clustering)

A.1.6 Spectral clustering

 Ratio Cut Clustering

 Normalized Cut Clustering

 Multiway Spectral Clustering

 Spectral Biclustering

 Shi-Malik Clustering

 Laplacian Eigenmaps for Clustering

A.1.7 Graph-based clustering

 Connected Components Clustering

 Markov Clustering (MCL)

 Girvan-Newman Clustering

 Louvain Method for Community Detection

 Infomap Algorithm

309A.1 List of clustering algorithms

 Walktrap Algorithm

 Edge Betweenness Clustering

 Chinese Whispers Clustering

 SPICi (Speed and Performance In Clustering)

 SCPS (Spectral Clustering on Perona & Shi’s graph)

A.1.8 Subspace and high-dimensional clustering

 PROCLUS (Projected Clustering)

 SUBCLU (Subspace Clustering)

 ENCLUS (Entropy-Based Subspace Clustering)

 ORCLUS (Orthogonal Subspace Clustering)

 FSSC (Fast Subspace Clustering)

 P3C (Pattern-based Subspace Clustering)

 FIRES (Frequent Itemset Clustering)

 SNN (Shared Nearest Neighbor Clustering)

 High-Dimensional Spectral Clustering

 LAC (Locally Adaptive Clustering)

A.1.9 Fuzzy and soft clustering

 Fuzzy C-Means

 Gustafson-Kessel Algorithm

 Fuzzy Min-Max Clustering

 Possibilistic C-Means (PCM)

 FCM-GA (Fuzzy C-Means with Genetic Algorithms)

 FCM-SC (Fuzzy C-Means with Spatial Constraints)

 Fuzzy Subspace Clustering

 Fuzzy SOM (Self-Organizing Maps)

A.1.10 Constraint-based clustering

 COP-k-means (Constrained k-means)

 Constrained DBSCAN

 C-DBSCAN (ConstraintBased DBSCAN)

 PCKMeans (Pairwise Constrained k-means)

 Semisupervised k-means

 FCM with Must-Link and Cannot-Link Constraints

 Hard k-means with Constraints

A.1.11 Evolutionary and genetic clustering

 Genetic Algorithm-Based Clustering

 GA-KMeans (Genetic Algorithm with k-means)

 AGCT (Agglomerative Genetic Clustering)

310 APPENDIX A Mathematical foundations

 MEPSO (Multi-Elitist Particle Swarm Optimization for Clustering)

 NSGA-II (Nondominated Sorting Genetic Algorithm-II for Clustering)

 ACO-CLUSTER (Ant Colony Optimization for Clustering)

 GCUK (Genetic Clustering with Unsupervised k-means)

A.1.12 Neural network-based clustering

 Self-Organizing Maps (SOM)

 Neural Gas

 Growing Neural Gas

 Autoencoder-Based Clustering

 Deep Embedded Clustering (DEC)

 Generative Topographic Mapping (GTM)

 DeepCluster (Deep Learning for Clustering)

A.1.13 Other algorithms

 Affinity Propagation

 Bisecting k-means

 Hybrid BIRCH-k-means

A.2 What is a centroid?

A centroid is the central point in a cluster. In geometry, it is the arithmetic mean or

the average of all the points in a shape. For example, in a triangle, the centroid is the

point where all the medians intersect (see figure A.1). In any other shape, it would be

simply an average of all the point coordinates.

A.3 L1 vs. L2 norm

The L1 norm is the sum of the absolute value of the entries in a vector; on the other

hand, the L2 norm is the square root of the sum of the squares of the entries in the

vector. It is the core difference between L1 and L2 norm.

A.4 Different scaling techniques used in the industry

The data we get can have different units and values. A dataset can have a variable

ranging from 1 to 10 while another variable in the same dataset can range from 1,000

Figure A.1 Examples

of centroids

311A.5 Time complexity O(n)

to 100,000. Normalizing the data allows us to normalize it or limit the data between a

range. It allows us to fit machine learning better on this normalized dataset.

 We normalize a dataset to adjust the values of different variables that are at quite

different scales to a common scale. An example is shown in figure A.2.

Figure A.2 In the first table, we have the mean and standard deviation for each of the variables. Once the data is

normalized, then the mean and standard deviation become zero as shown in the second table.

There are different ways to normalize a dataset. The two most popular ones are

 Standardization—This involves using the mean and standard deviation for nor-

malizing a dataset. It is also known as z-transformation. It standardizes all the vari-

ables; the data becomes normally distributed, and all the features become

comparable. The equation used is shown in equation A.1:

(A.1)

where µ is the mean and  is the standard deviation.

As we can observe in figure A.2, right, all the variables now have a mean of 0

and a standard deviation of 1.

 Min-max scaling—This utilizes the maximum and minimum values of a variable

using equation A.2:

(A.2)

Normalizing a dataset is one of the important steps followed during the machine

learning process.

A.5 Time complexity O(n)

Time complexity is a computational concept used to measure and estimate the

amount of time an algorithm will take to complete as a function of the length of the

input. Generally expressed using Big O notation, time complexity is used to classify

the algorithms as per their worst-case or average-case run-time performance.

Distance
(miles)

Time
(seconds)

Weight
(tons)

Price ($)
Distance
(miles)

Time
(seconds)

Weight
(tons)

Price ($)

1.1 20,000 0.01 100,000 -1.264911064 -0.11 -1.12 -1.70

1.2 25,000 0.02 400,000 -0.632455532 0.17 -1.03 0.12

1.3 5,000 0.2 500,000 0 -0.97 0.57 0.73

1.4 10,000 0.2 400,000 0.632455532 -0.68 0.57 0.12

1.5 50,000 0.25 500,000 1.264911064 1.60 1.01 0.73

Mean 1.3 22000 0.136 380000 0 0 0 0

SD 0.158113883 17535.67792 0.112383273 164316.767 1 1 1 1

312 APPENDIX A Mathematical foundations

 Key aspects of time complexity include

 Constant time [O (1)]—The algorithm’s run time does not change with the size

of the input.

 Logarithmic time [O (log n)]—The run time grows logarithmically as the input

size increases. This often occurs in algorithms that halve the problem size at

each step, like binary search.

 Linear time [O(n)]—The run time increases linearly with the size of the input.

 Linearithmic time [O (n log n)]—This is common in efficient sorting algorithms

like mergesort and heapsort.

 Quadratic time [O (n²)]—The run time grows quadratically with the input size,

often seen in algorithms with nested loops.

 Exponential time [O (2^n)]—The run time doubles with each additional element

in the input, typical in some recursive algorithms.

Understanding time complexity helps in evaluating the efficiency of algorithms and

choosing the right one for a given problem.

A.6 How to install packages in Python

In Python, generally the pip command is used to install packages. The steps are as

follows:

 Open your command-line interface (Terminal, Command Prompt, or Power-

Shell). Type pip install package_name. For example, if you want to install

numpy, type pip install numpy.

 If you want to install a specific version, use pip install package_name==

version_number. For example, if you want to install numpy 1.21.0, type pip

install numpy==1.21.0.

 Installing from a requirement file, you can create a requirements.text file

with all the packages’ information and then install it: pip install -r

requirements.text.

 Sometimes you might have to upgrade a package. Then the command is pip

install –upgrade package_name. An example is pip install -–upgrade numpy.

A.7 Correlation

Correlation is a statistical and mathematical key performance indicator to measure

the extent to which two variables are related. It is used to decipher the relationship

between variables, indicating whether an increase in one variable tends to result in an

increase (positive correlation) or a decrease (negative correlation) in another.

 Key types of correlation are

 Positive correlation—As one variable increases, the other also increases. For

example, height and weight often show a positive correlation.

313A.7 Correlation

 Negative correlation—As one variable increases, the other decreases. For exam-

ple, many times, when the price of an item increases, the demand decreases,

and that is a negative correlation.

 No correlation—This is when there is no apparent relationship between the two

variables. For example, the amount of ice cream sold and the number of TVs

sold might show no correlation.

A.7.1 Correlation coefficient

The strength and direction of a correlation are quantified by the correlation coeffi-

cient, typically denoted as r. It ranges from –1 to 1:

 r = 1—Perfect positive correlation

 r = –1—Perfect negative correlation

 r = 0—No correlation

Values between –1 and 1 indicate varying degrees of correlation.

A.7.2 Uses of correlation

Correlation is used in many fields, including the following:

 Data analysis—Correlation helps analysts identify relationships between vari-

ables and helps in further analysis or research.

 Predictive modeling—In machine learning and predictive modeling, a model’s

performance can be improved if we understand the relationship between the

variables.

 Finance—Investors and financial advisors use correlation analysis to assess the

relationships between asset prices, different factors, and reasons to invest,

which helps in investment and portfolio diversification strategies.

 Healthcare—Researchers in the health sector collect the data on lifestyle factors

(like diet, smoking, exercise) and demographics and examine correlations

between these factors and health outcomes to identify potential risk factors like

heart attack, diabetes, etc.

 Social sciences—In fields like psychology and sociology, correlation is used to

explore relationships between consumer behaviors, population attitudes, and

demographic factors. These studies help uncover relationships in purchasing

patterns, reviews, and feedback.

A.7.3 Important considerations

Keep the following ideas in mind when considering correlation:

 Correlation does not imply causation. Just because two variables are correlated
does not mean that one causes the other. There might be other factors involved
too, or it might be a coincidence. For example, we might find that the sale of
ice cream is positively correlated to the number of shark attacks. Hence, we
deduce that ice cream sales affect shark attacks—that is absurd. The real reason
is ice cream sales increase during the summer season, which is when more peo-
ple visit beaches.

314 APPENDIX A Mathematical foundations

 There may be outliers. Extreme values can distort correlation coefficients, so

it’s important to be vigilant on the outliers. Many times if we simply visualize the

data with scatter plots, we might get the true relationship.

 There may be nonlinear relationships. Correlation coefficients measure linear

relationships. If the true relationship between the two variables is nonlinear,

correlation might not capture it.

Understanding correlation is fundamental in various fields and often one of the very

first steps. It can be useful to uncover insights that help further drive strategic deci-

sions and the overall path ahead.

A.8 Time-series analysis

Time-series analysis involves the study of data points that are collected or recorded at

specific time intervals like hourly/daily/weekly/monthly/yearly or others. It is used for

examining and understanding trends and behaviors, seasonal patterns and relation-

ships, and cyclical behaviors over time periods, and hence understanding the pattern

will be helpful in forecasting. For example, if we want to predict the temperature or rain-

fall or if we wish to predict the demand for an item, it can involve time-series analysis.

 Time-series analysis is commonly used in fields like marketing, finance, environ-

mental studies, and geographic and economic forecasting to predict future values

based on historical data. Though there are quite a few techniques, the most common

ones are moving averages, exponential smoothing, and ARIMA. Visualization meth-

ods, like line graphs, are essential for identifying patterns and anomalies within the

data. Overall, time-series analysis is a useful technique for understanding time-based

patterns in the data and for making informed predictions and forecasts.

A.9 Mathematical foundation for data representation

There are quite a few mathematical terms one must understand to develop a thor-

ough understanding of algorithms. They are useful for understanding the concepts

and the mathematical foundation and are imperative for dimensionality reduction

methods like principal component analysis and singular value decomposition

explored in chapter 3. These mathematical operations are intuitive enough, and you

might have covered them in your earlier mathematical courses, but it is important

that we refresh the concepts here. The concepts examined are nothing new but are

sometimes complex to interpret and comprehend.

NOTE The coding of these concepts in Python can be tricky sometimes. For-
tunately, there are quite a few robust libraries and packages that provide eas-
ier solutions, and hence we don’t have to worry about the implementation of
these concepts in Python.

We are trying to reduce the number of dimensions of a dataset. A dataset is nothing

but a matrix of values; hence, a lot of the concepts are related to matrix manipulation

methods, their geometrical representation, and performing transformations on such

matrices. The major concepts are studied next.

315A.9 Mathematical foundation for data representation

A.9.1 Scalar and vector

In simple language, if you walk a distance of 5 km it is scalar; if you walk a distance of

5 km in a direction, say north, it is a vector. So we can say that a vector is a mathemati-

cal object that has a magnitude and a direction. Without the direction, it is just a sca-

lar value. We cite a few examples of each in table A.1.

In plain words, we can conclude that a vector is a scalar with a direction.

A.9.2 Standard deviation and variance

The purpose of standard deviation and variance is to measure how spread the data is.

Standard deviation is given by equation A.3

(A.3)

where xi is each value from the population, µ the mean of the population, n is the

population size or the number of observations, and  is the standard deviation of the

population. And variance is given by equation A.4

(A.4)

where xi is each value from the population, xbar is the mean value of the observations,

n is the number of observations, and S2 is the sample variance.

 Suppose we have five children in a class with respective heights of 50, 51, 52, 53, and

54 inches. The average height is (50+51+52+53+54)/5 = 52 inches. See table A.2.

Table A.1 Examples of scalar and vector quantities

Examples of scalar quantities Examples of vector quantities

Length, width, height, distance Displacement

Mass, area, density, volume Weight, force

Pressure, temperature, energy, entropy Lift, drag, thrust

Speed, time, work, power Velocity, acceleration, momentum

Table A.2 Child height and the calculated difference between the average and height

Child Height
Difference

(Average – Height)

A 50 52 – 50 = 2

B 51 52 – 51 = 1

C 52 52 – 52 = 0

316 APPENDIX A Mathematical foundations

Note: Variance  2 = (22 + 12 + 02 + –12 + –22)/5 = 10/5 = 2. Standard deviation  = √ (2) = 1.441.

A.9.3 Covariance and correlation

Covariance and correlation are the measurements of the relationship and mutual

dependency between two variables. Covariance is the direction of the linear relation-

ship, while correlation measures the strength and direction of the relationship. See

figure A.3.

Figure A.3 If X is increasing, then the value of Y is also increasing (left). If X is increasing,

Y is decreasing (middle). There is no observed relationship between X and Y (right).

Figure A.3, left, shows that when X decreases, Y increases, and vice versa in the mid-

dle, while on the right, there seems to be no relationship between the two variables.

Here, covariance will simply denote that there is a positive or a negative or no rela-

tionship between the variables. The magnitude of covariance will be difficult to com-

prehend as it is not a normalized result. Correlation, on the other hand, will be able

to provide a magnitude of the strength too. Correlation can be calculated by dividing

the covariance of the two variables by the product of the standard deviations.

 The most popular correlation coefficient is Pearson’s correlation coefficient,

which only considers the linear relationship between two variables. The other widely

used coefficient is Spearman’s rank correlation, which is more sensitive to nonlinear

relationships. We can visualize correlation as shown in figure A.4.

 Correlation does not mean causation. This is the most common mistake made

during analysis. For example, consider the statement “There is an increase in sales of

shoes, and at the same time there is a decrease in the rate of drowning deaths”. If the

inference made is that an increase in shoe sales leads to a decrease in drowning

deaths, the result is a completely illogical result. This proves that correlation does not

mean causation.

D 53 52 – 53 = –1

E 54 52 – 54 = –2

Table A.2 Child height and the calculated difference between the average and height (continued)

Child Height
Difference

(Average – Height)

X Y X Y X Y

100 1 100 5 100 3

101 2 101 4 101 4

102 3 102 3 102 2

103 4 103 2 103 5

104 5 104 1 104 1

317A.9 Mathematical foundation for data representation

Figure A.4 In the first case, there is a positive correlation between the two variables. In the second case, there

is a negative correlation between the two variables. In the third case, there is no observed relationship between

the two variables.

The indicators are used to test if there is any relationship between two variables in the

datasets. The concept is utilized and referred to in data science quite often. We ana-

lyze the strength of the relationship and decide whether a logical trend exists.

A.9.4 Matrix decomposition, eigenvectors, and eigenvalues

Sometimes in linear algebra we wish to factorize a matrix into a product of matrices;

this process is called matrix decomposition. We use matrix decomposition methods if we

want to represent a matrix into a product of matrices.

 Eigenvectors and eigenvalues are components of matrix decomposition. If we have

a square matrix A, then the understanding is as shown in equation A.5

A * v =  * v (A.5)

where v is the eigenvector and  is the eigenvalue.

 For example, let’s say we have a matrix, as shown in figure A.5, and we want to get

the eigenvector. Here, –2 is the eigenvalue, and [1 –2 1] is the eigenvector. The eigen-

vector is a nonzero vector that does not change direction during the transformation.

It only scales the original matrix by a factor of . The eigenvectors and eigenvalues are

utilized for principal component analysis (PCA) implementation.

367
337
565

1
−2
1

=
3−12+7
3−6+7
5−12+5

=
−2
4
2

−2
1
−2
1

=
−2
4
2 Figure A.5 Finding eigenvectors

and eigenvalues

318 APPENDIX A Mathematical foundations

A.9.5 Special matrices

We next define a few special matrices.

 A diagonal matrix has all the nondiagonal elements as zero, as shown in figure A.6.

An orthogonal matrix is a square matrix that fulfills the following criteria as shown in

equation A.6

QTQ = QQT = I (A.6)

where Q is the original matrix, QT is its transpose, and I is the identity matrix, repre-

sented in figure A.7.

A matrix is symmetric if its transpose is equal to itself (i.e., QT = Q).

A.10 Hyperparameters vs. parameters

Parameters are the internal values that a model learns from the training of the

machine learning model. They are, for example, coefficients in a regression model or

weights/biases in a neural network. They are set automatically during the training of

the machine learning model.

 Hyperparameters, on the other hand, are predefined before the training starts and

control the machine learning model. Examples are the number of clusters (k) in k-

means clustering or the distance metrics used. They are chosen manually and can be

optimized using various techniques like GridSearch CV or Random Search CV.

X
0
0

0
Y
0

0
0
Z

Figure A.6 An example of a diagonal matrix

1
0
0

0
1
0

0
0
1

Figure A.7 An example of an orthogonal matrix

319

index

A

A/B testing 302
ABS (average basket size) 83
accuracy monitoring 302
ACO-CLUSTER (Ant Colony Optimization for

Clustering) 310
activation functions 243–245

ReLU (rectified linear unit) 244
sigmoid function 243
softmax function 245
tanh function 243

adjacency matrix 154
adversarial training 285
affinity matrix 156
Affinity Propagation 310
AGCT (Agglomerative Genetic Clustering) 52,

309
AI (artificial intelligence) 279

business intelligence and 13
algorithms

ML (machine learning) 18–29
supervised learning 248

all_records list 123
anomaly detection 271
antecedent 115
Apriori algorithm 119–126

challenges with 125
Python implementation 121–125

artificial neurons 239–241
association rules 111–112

Apriori algorithm 119–126
building blocks of 114–119
case study for 143–145
equivalence class clustering and bottom-up lat-

tice traversal 127–130

F-P algorithm 131–137
practical next steps and suggested readings 147
sequence rule mining 137–142
technical toolkit 112

ATV (average transaction value) 83
AUTOCLASS (Bayesian Model-based

Clustering) 308
Autoencoder-Based Clustering 310
autoencoders 267–268

applications of 271
components of 269
feature learning 268
practical next steps and suggested readings 277
Python implementation of 275
toolkit 268
training 270
types of 271–275

B

backpropagation 250–253
mathematics behind 251
optimization 253

batch deployment 301
batch gradient descent 246
Bayesian Gaussian Mixture Model 308
BERT (Bidirectional Encoder Representations

from Transformers) 286
bigrams 215
binary data 6
BIRCH (Balanced Iterative Reducing and Cluster-

ing using Hierarchies) 307
Bisecting k-means 310
bivariate analysis 105
blankline tokenization 211

INDEX320

Boltzmann learning rule 258
key points 259

border points 63
bottleneck 270
BOW (bag of words) approach 211
business problem definition 16, 293
business stakeholders and subject matter

experts 14

C

C-DBSCAN (ConstraintBased DBSCAN) 309
Calinski-Haranasz index 55
canary deployment 302
case studies, sentiment analysis case study with

Python implementation 222–228
categorical variables 6, 73, 296
Cauchy distribution 192
CBOW (continuous bag of words) 221
central limit theorem 168
centroid-based clustering 37–50

finding optimum value of k 43
k-means clustering 39–41
k-means clustering implementation using

Python 46–50
measuring accuracy of clustering 42
pros and cons of k-means clustering 44–45

centroids 310
Chameleon 307
ChatGPT 279, 287

applications and key features of 287
Chebyshev distance 38
Chinese Whispers Clustering 309
CLARA (Clustering Large Applications) 307
CLARANS (Clustering Large Applications based

on Randomized Search) 307
class variable 46
classification algorithms 22–24
CLIQUE (Clustering in Quest) 308
clustering 34, 149

centroid-based 37–50
challenges faced in 72
density-based 60–67
fuzzy 160–167
practical next steps and suggested readings 174
spectral 151–158
technical toolkit 33, 150
techniques for 35

clustering algorithms 307–310
clustering techniques 32

case study 68–72
connectivity-based clustering 50–59
practical next steps and suggested readings 74

CNNs (convolutional neural networks) 8, 254
key concepts of 254
use of 256

code size 271
Colab (Google Colaboratory) 33
Computational Network Science (Hexmoor) 174
conditional probability 117
confidence 115–119

overview of 116
connectedness 64
connectivity-based clustering 50–59

hierarchical clustering case study using
Python 57

linkage criterion for distance measurement 53
optimal number of clusters 54
pros and cons of hierarchical clustering 56
types of hierarchical clustering 52

consequents 115
Constrained DBSCAN 309
constraint-based clustering 309
contextual awareness 287
continuous data 7
continuous deployment and integration 302
continuous variable 19
contractive autoencoders 273
contrastive divergence algorithm 260
conviction 115–119

overview of 117–119
COP-k-means (Constrained k-means) 309
core points 63–64
correlation 312, 316

coefficient 84, 313
important considerations 313
uses of 313

cosine distance 39
cost function 181–184
covariance 316
CURE (Clustering Using Representatives) 307
curse of dimensionality 39, 80
customization 287

D

data 5–12
data engineering and management 12
data quality 9–11
defined 5
preparing 295
types of 6–9

data artists 304
data cleaning 207–209, 295
data compression 271
data discovery and feasibility analysis 294
data discovery phase 17
data drift 302
data encoding 208
data engineering team 15
data preprocessing 17

INDEX 321

data representation, mathematics for 314–318
covariance and correlation 316
matrix decomposition, eigenvectors, and

eigenvalues 317
scalar and vector 315
special matrices 318
standard deviation and variance 315

data science team 16
dataframes 49
datasets, missing values in 297
DBCLASD (Distribution-Based Clustering of Large

Spatial Databases) 308
DBEM (Density-Based EM) 308
DBN (deep belief networks) 259–261

key points of 259
DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) 62–67, 307
nuts and bolts of 62
pros and cons of 65
Python solution for 65
steps in 64

DEC (Deep Embedded Clustering) 310
decoder 270
deep learning 236–238

backpropagation 250–253
Boltzmann learning rule 258–259
CNN 254, 256
in unsupervised manner 253
libraries 261–263
neural networks 238–247
practical next steps and suggested readings 264
supervised learning 248–250
technical toolkit 236

DeepCluster (Deep Learning for Clustering) 310
degree matrix 154
DENCLUE (Density-Based Clustering) 308
dendrogram 50
denoizing autoencoders 274
density-based

algorithms 307
clustering 60–67
DBSCAN clustering 62–67

density-based clustering
neighborhood and density 60

density-reachable 64
DevOps team 16
diagonal matrix 318
dimensionality reduction 77, 176, 271

case study 198
case study for 103–106
curse of dimensionality 78–82
manual methods of 83–85
mathematical foundation 82
MDS (multidimensional scaling) 177–184
methods for 82

PCA 86–97
practical next steps and suggested readings 106,

200
pros and cons of 102
Python implementation of MDS 184–188
singular value decomposition (SVD) 97–101
t-SNE 189–196
technical toolkit 78, 177
UMAP 196–198

dimensions 79
discrete data 7
discriminative models 282–284
distance measurement 53, 73
divisive clustering 52, 307
documentation 303
drug discovery 271
Dunn index 43
duplicate values in data 295

E

EAC (Ensemble Agglomerative Clustering) 307
ECLAT (equivalence class clustering and bottom-

up lattice traversal) 127–130
Python implementation 129

EDA (exploratory data analysis) 17, 291, 299
Edge Betweenness Clustering 309
edge deployment 302
eigenvalue decomposition 90
eigenvalues 317
eigenvectors 317
elbow method 43
EM (Expectation Maximization) Algorithm 169,

308
ENCLUS (Entropy-Based Subspace

Clustering) 309
encoder 270
end-to-end model deployment, EDA 299
ETL (export, transform, load) process 12
Euclidean distance 38, 65
evolutionary clustering 309

F

F-P algorithm 131–137
farthest neighbor 53
FCM (fuzzy c-means) algorithm 161–162

Python implementation of 164
FCM with Must-Link and Cannot-Link

Constraints 309
FCM-GA (Fuzzy C-Means with Genetic

Algorithms) 309
FCM-SC (Fuzzy C-Means with Spatial

Constraints) 309
feed-forward propagation 249

INDEX322

Fielder value and vector 155
filter methods 84
FIRES (Frequent Itemset Clustering) 309
fit_transform method 93
fitted_data dataframe 194
for loop 124, 187
FP tree 131
frequency-based removal of words 208
frequent pattern tree 131
FSSC (Fast Subspace Clustering) 309
Fuzzy C-Means (FCM) 307
fuzzy clustering 36, 160–167, 309

Python implementation of 164
types of 161–164

Fuzzy Min-Max Clustering 309
Fuzzy SOM (Self-Organizing Maps) 309
Fuzzy Subspace Clustering 309

G

G-Means (Gaussian Means) 308
GA-k-means (Genetic Algorithm with k-

means) 309
GANs (generative adversarial networks) 236, 279,

283–287
adversarial training 285
BERT, GPT-3, and others 286
discriminator networks 284
generator networks 284
practical next steps and suggested readings 290
variants and applications of 286

Gath-Geva algorithm 162
Gaussian distribution 167
GCUK (Genetic Clustering with Unsupervised k-

means) 310
GenAI (generative AI) 18, 203, 236, 279–282

discriminative models and 282
for text data 230
integration of 288

generator networks 284
genetic clustering 309
get_dummies() method 296
Girvan-Newman Clustering 308
GK (Gaustafson-Kessel) algorithm 162, 309
GloVe 221
GMM (Gaussian Mixture Model) 150, 167–174,

308
EM technique 169
Python implementation of 171

Google Colaboratory (Colab) 33
GPT-3 (Generative Pre-trained Transformer

3) 286
graph-based clustering 308
greedy approach 52
grid-based algorithms 308

GRIDCLUS (Grid-based Clustering
Algorithm) 308

group average linkage 53
groupby 49
Growing Neural Gas 310
GTM (Generative Topographic Mapping) 310

H

HAC-S (Hierarchical Agglomerative Clustering
with Spatial Constraints) 307

hard clustering 36, 161
Hard k-means with Constraints 309
HDBSCAN (Hierarchical DBSCAN) 308
.head command 122
head variable 46
Hexmoor, Henry 174
hidden layer 242
hierarchical clustering 307

case study using Python 57
linkage criterion for distance measurement 53
optimal number of clusters 54
pros and cons of 56
types of 52

HIERDENC (Hierarchical Density-Based
Clustering) 307

High-Dimensional Spectral Clustering 309
HMM (Hidden Markov Model) Clustering 308
Hughes phenomenon 80
Hybrid BIRCH-k-means 310
hyperparameters 245, 318
hyperspectral images 199

I

if/else block 20
image denoising 271
independent variables 18, 248
inertia 42
.info command 122
info variable 46
Infomap Algorithm 308
input layer 242, 255
intercluster sum of squares 42
IQR (interquartile range) 299

J

Java 14
Julia 14
junk or unwanted characters 208

INDEX 323

K

k-means 307
k-means clustering 39–41

finding optimum value of k 43
implementation using Python 46–50
pros and cons of 44–45

k-median clustering 45
K-medoids (PAM) 307
k-medoids clustering 45
K-Modes 307
K-Prototypes 307
Kaiser criteria 93
Keras 177, 262

Python code for 262
keras library 193, 236, 268
KL (Kullback-Liebler) divergence 191–192
kmeans algorithm 172
KNN (k-nearest neighbor) 39
knowledge-representation 270
KPIs (key performance indicators) 10, 293
Kullback-Liebler (KL) divergence 191

L

L1 vs. L2 norm 310
LabelEncoder 99
LAC (Locally Adaptive Clustering) 309
language models 214
Laplacian Eigenmaps for Clustering 308
Laplacian matrix 155
latent variables 170
layer-based pretraining 260
LDA (linear discriminant analysis) 78
LDBSCAN (Labeled DBSCAN) 308
lemma, defined 209
lexicon normalization 209
libraries, deep learning 261–263
library-based cleaning 208
lift 115–119

overview of 117–119
line of best fit 20, 87
linkage criterion 53
LLMs (large language models) 205
loss function 271

adding 249
Louvain Method for Community Detection 308
LSTM (long short-term memory) 257

M

machine translation 271
make_circles method 159
Manhattan distance 38

manual methods of dimensionality reduction
83–85

algorithm-based methods for reducing
dimensions 85

correlation coefficient 84
manual feature selection 83

market basket analysis 114
Markov assumption 215
mathematics 307

centroids 310
for data representation 314–318
L1 vs. L2 norm 310
scaling techniques 311
time complexity O(n) 311
time-series analysis 314

MATLAB 14
matplotlib library 33, 46, 57–58, 78, 150, 184
matrices

decomposition 317
special 318

MCL (Markov Clustering) 308
MCLUST (Model-based Clustering using EM) 308
MDS (multidimensional scaling) 177–184

classic 179
nonmetric 180–184
Python implementation of 184–188

Mean Shift 308
membership 161
MEPSO (Multi-Elitist Particle Swarm Optimization

for Clustering) 310
min-max scaling 311
Mini-Batch k-means 307
mini-batch stochastic gradient descent 246
MinMaxScalar() function 187
missing values in dataset 297
Mixmod (Mixture Models for Clustering) 308
ML (machine learning) 3

AI and business intelligence 13
algorithms 18–29
data 5–12
overview of 14–17
process 292
technical toolkit 4

model deployment 300
duplicate values in data 295
end-to-end 292, 294–297, 300, 302–303, 305
types of 301

model development and business approval 300
model drift 302
model maintenance and refresh 303
model-based algorithms 308
mpl_toolkits library 49
multilingual capabilities 287
Multiway Spectral Clustering 308
MXNet 262

INDEX324

N

n-gram model 214
NAG (Nesterov accelerated gradient) 247
NaN (not a number) 11
natural language understanding 287
nearest neighbors 53
negative correlation 313
neighborhood 60
network library 150
Neural Gas 310
neural network-based clustering 310
neural networks

activation functions 243–245
artificial neurons and perceptrons 239–241
building blocks of 238–247
for solutions 239
hyperparameters 245
layers in 241–242
optimization functions 246–247

NLP (natural language processing) 202, 281
unsupervised learning for text data, sentiment

analysis case study with Python
implementation 222–228

nltk library 217–219
no correlation 313
noise 64
noisy dataset 73
nominal data 7
normal distribution 167
Normalized Cut Clustering 308
NSGA-II (Nondominated Sorting Genetic Algo-

rithm-II for Clustering) 310
number of nodes per layer 271
numpy library 33, 78, 121, 150, 184
numpy module 177

O

objective function 249
one-hot encoding 73
operations team 15
OPTICS (Ordering Points To Identify the Cluster-

ing Structure) 307
OptiGrid 308
optimization 253
optimization functions 246–247

adaptive optimization algorithms 247
batch gradient descent 246
learning and learning rate 247
mini-batch stochastic gradient descent 246
SGD (stochastic gradient descent) 246

ORCLUS (Orthogonal Subspace Clustering) 309
ordinal data 7
orthogonal matrix 318

outliers 64, 299
output layer 242, 256
overfitting 81

P

P3C (Pattern-based Subspace Clustering) 309
packages, installing in Python 312
pandas library 33, 78, 121, 150
pandas module 177
parameters 271, 318
partitioning-based algorithms 307
Pavia University Dataset 199
PCA (principal component analysis) 78, 86–97,

176, 182, 190, 269
eigenvalue decomposition 90
Python solution using 91–97

PCKMeans (Pairwise Constrained k-means) 309
PCM (Possibilistic C-Means) 309
perceptrons 239–241
perplexity 192
pip command 312
planograms 143
pooling layer 255
positive correlation 312
preparation, cleaning data 295
preprocessing text data 207
principal axis 88
principal components 86
PROCLUS (Projected Clustering) 309
propagation, feed-forward 249
pyECLAT library 129
pyspade library 142
Python 14

Apriori algorithm 121–125
cleaning text data using 216–219
clustering text data using 228
code for Keras 262
code for TF 262
equivalence class clustering and bottom-up lat-

tice traversal 129
FCM (fuzzy c-means) algorithm 164
hierarchical clustering case study using 57
implementation of spectral clustering 158
implementation of t-SNE 193–196
implementing autoencoders 275
implementing GMM 171
installing packages 312
k-means clustering implementation using 46–50
sentiment analysis case study with 222–228
singular value decomposition (SVD) 98–101
solution using PCA 91–97

PyTorch 262

INDEX 325

Q

qualitative data 6
quantitative data 7

R

R 14
random_state parameter 48
Ratio Cut Clustering 308
RBM (restricted Boltzmann machine) 259
real-time deployment 301
reconstruction loss 272
Regex (Regular Expression) 216
Regexp tokenization 211
regression algorithms 19–21
reinforcement learning 28
ReLU (rectified linear unit) 244, 255
reproducibility 302
RGB (red, green, blue) 189
RNNs (recurrent neural networks) 8, 254, 256

key concepts of 256
ROCK (Robust Clustering using Links) 307
rollback, defined 303

S

SAS 14
scalability 302
scalars 315
scaling techniques 311
scipy library 33, 78
SCPS (Spectral Clustering on Perona & Shi’s

graph) 309
seaborn library 150
seaborn module 177
security and compliance 302
Semisupervised k-means 309
semisupervised learning 28
sentiment analysis case study with Python

implementation 222–228
sequence rule mining 137–142

SPADE algorithm 138–142
SGD (stochastic gradient descent) 246
Shape command 46
Shi-Malik Clustering 308
shingles 214
sigmoid function 23, 243
significant variables 268
silhouette value 42
similarity graphs 153
SimpleImputer method 298
skfuzzy library 150
sklearn library 33, 47, 78, 91, 94, 150, 184–185
sklearn module 177

SNE (stochastic neighbor embedding) 190
SNN (Shared Nearest Neighbor Clustering) 309
soft clustering 36, 161, 309
softmax function 245
SOM (Self-Organizing Maps) 310
Sonnet 262
SPADE (Sequential Pattern Discovery Using Equiv-

alence classes) algorithm 138–142
sparse autoencoders 273
sparsity function 273
special matrices 318
spectral clustering 151–158, 308

building blocks of 153–156
process of 156–158
Python implementation of 158

spectral gap 155
SPICi (Speed and Performance In

Clustering) 309
SPSS 14
square matrices 97
standard deviation 315
standardization 311
STING (Statistical Information Grid) 308
stochastic gradient descent 197
stopping word removal 208
structured dataset 7
SUBCLU (Subspace Clustering) 308–309
subjective interpretations 74
subspace and high-dimensional clustering 309
successive iterations 303
supervised fine-tuning 260
supervised learning 18–24

adding loss function 249
algorithms 248
calculating error 250
classification algorithms 22–24
deep learning in 248–250
feed-forward propagation 249
regression algorithms 19–21

support 115–119
overview of 116

SVD (singular value decomposition) 78, 97–101
Python solution using 98–101

T

t-SNE (t-distributed stochastic neighbor
embedding) 78, 177, 189–196

Cauchy distribution 192
Python implementation of 193–196

tanh function 243
target variable 18, 248
technical toolkit 236
tensorflow library 236, 268

INDEX326

text data
challenges with 205
cleaning using Python 216–219
clustering using Python 228
extracting features from text datasets 209
GenAI for 230
preprocessing 207
tokenization 210
unsupervised learning for 202–204, 207–209,

211, 213–214, 219, 221–228, 231
TF (TensorFlow) 261

Python code for 262
TF-IDF (term frequency-inverse document

frequency) 210, 213–214
time complexity O(n) 311
time-consuming 74
time-series analysis 314
tokenization 210
too much data 73
toolkit 268
training

autoencoders 270
data 18, 248
examples 18, 248

transfer functions 243
trigrams 215
tSNE_first_component 194
tSNE_second_component 194

U

UI/visualization team 15
UMAP (Uniform Manifold Approximation and

Projection) 177, 196–198
key points of 198
working with 197

undercomplete autoencoders 272
unigrams 215
univariate analysis 105
unsupervised learning 4, 24–28, 109, 233

BOW approach 211
challenges with text data 205
deep learning in 253
extracting features from text datasets 209
for text data 203–204, 207–210, 213–214, 219,

221–228, 231

language models 214
technical toolkit 203
text clustering using Python 228
text data 202, 216–219
use cases for text data 204

user feedback 303

V

value_counts function 46
variance 315
variational autoencoders 275
VDBSCAN (Variable Density-Based Spatial

Clustering) 308
vectors 315
versioning 303

W

Walktrap Algorithm 309
Ward linkage method 53
WaveCluster 308
WCSS (within the cluster sum of squares) 42
weights 240
Weka 14
Whitespace tokenization 211
word embeddings 219
Word2Vec 221
wordpunct tokenization 211
wrapper methods 84

X

X_variables 92
X-Means (Extended k-means) 308

Y

y_variable 92

Z

z-transformation 311

3

1 Import the necessary libraries:

import keras

 from keras import layers

2 Create our network architecture:

 # This is the size of our encoded representations

 encoding_dim = 32 # 32 floats -> compression of factor 24.5, assuming

 the input is 784 floats

 # This is our input image

 input_img = keras.Input(shape=(784,))

 # "encoded" is the encoded representation of the input

 encoded = layers.Dense(encoding_dim, activation='relu')(input_img)

 # "decoded" is the lossy reconstruction of the input

 decoded = layers.Dense(784, activation='sigmoid')(encoded)

This model maps an input to its reconstruction

 autoencoder = keras.Model(input_img, decoded)

Hands-on Python Implementation to Complement

the Machine Learning Concepts

ISBN-13: 978-1-61729-872-1

G
enerative AI, predictive algorithms, fraud detection,
and many other analysis tasks rely on cheap and plenti-
ful unlabeled data. Machine learning on data without

labels—or unsupervised learning—turns raw text, images, and
numbers into insights about your customers, accurate com-
puter vision, and high-quality datasets for training AI models.
Th is book will show you how.

Data Without Labels is a comprehensive guide to unsupervised
learning, off ering a deep dive into its mathematical founda-
tions, algorithms, and practical applications. It presents practi-
cal examples from retail, aviation, and banking using fully-
annotated Python code. You’ll explore core techniques like
clustering and dimensionality reduction along with advanced
topics like autoencoders and GANs. As you go, you’ll learn
where to apply unsupervised learning in business applica-
tions and discover how to develop your own machine learning
models end-to-end.

What’s Inside

● Master unsupervised learning algorithms
● Real-world business applications
● Curate AI training datasets
● Explore autoencoders and GANs applications

Intended for data science professionals. Assumes knowledge of
Python and basic machine learning.

Vaibhav Verdhan is a seasoned data science professional with
extensive experience working on data science projects in a
large pharmaceutical company.

Th e technical editor on this book was Davide Del Vento.

PYTHON/DATA

M A N N I N G

“An invaluable resource for
anyone navigating the

complexities of unsupervised
learning. A must-have.”—Ganna Pogrebna

Th e Alan Turing Institute

“Empowers the reader to
unlock the hidden potential

 within their data.”—Sonny Shergill, Astra Zeneca

“A must-have for teams
working with unstructured

data. Cuts through the
fog of theory and delivers

 practical solutions.”—Leonardo Gomes da Silva
onGRID Sports Technology

“Th e Bible for unsupervised
learning! Full of real-world

applications, clear
explanations, and excellent

 Python implementations.”—Gary Bake
Falconhurst Technologies

Vaibhav Verdhan ● Foreword by Ravi Gopalakrishnan

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Data Without Labels

	Data Without Labels
	Praise for Data Without Labels
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Basics
	1 Introduction to machine learning
	1.1 Technical toolkit
	1.2 Data, data types, data management, and quality
	1.2.1 What is data?
	1.2.2 Various types of data
	1.2.3 Data quality
	1.2.4 Data engineering and management

	1.3 Data analysis, ML, AI, and business intelligence
	1.4 Nuts and bolts of ML
	1.5 Types of ML algorithms
	1.5.1 Supervised learning
	1.5.2 Unsupervised algorithms
	1.5.3 Semisupervised algorithms
	1.5.4 Reinforcement learning

	1.6 Concluding thoughts
	Summary

	2 Clustering techniques
	2.1 Technical toolkit
	2.2 Clustering
	2.3 Centroid-based clustering
	2.3.1 K-means clustering
	2.3.2 Measuring the accuracy of clustering
	2.3.3 Finding the optimum value of k
	2.3.4 Pros and cons of k-means clustering
	2.3.5 K-means clustering implementation using Python

	2.4 Connectivity-based clustering
	2.4.1 Types of hierarchical clustering
	2.4.2 Linkage criterion for distance measurement
	2.4.3 Optimal number of clusters
	2.4.4 Pros and cons of hierarchical clustering
	2.4.5 Hierarchical clustering case study using Python

	2.5 Density-based clustering
	2.5.1 Neighborhood and density
	2.5.2 DBSCAN clustering

	2.6 Case study using clustering
	2.6.1 Business context
	2.6.2 Dataset for the analysis
	2.6.3 Suggested solutions
	2.6.4 Solution for the problem

	2.7 Common challenges faced in clustering
	2.8 Concluding thoughts
	2.9 Practical next steps and suggested readings
	Summary

	3 Dimensionality reduction
	3.1 Technical toolkit
	3.2 The curse of dimensionality
	3.3 Dimension reduction methods
	3.3.1 Mathematical foundation

	3.4 Manual methods of dimensionality reduction
	3.4.1 Manual feature selection
	3.4.2 Correlation coefficient
	3.4.3 Algorithm-based methods for reducing dimensions

	3.5 Principal component analysis
	3.5.1 Eigenvalue decomposition
	3.5.2 Python solution using PCA

	3.6 Singular value decomposition
	3.6.1 Python solution using SVD

	3.7 Pros and cons of dimensionality reduction
	3.8 Case study for dimension reduction
	3.9 Concluding thoughts
	3.10 Practical next steps and suggested readings
	Summary

	Part 2 Intermediate level
	4 Association rules
	4.1 Technical toolkit
	4.2 Association rule overview
	4.3 The building blocks of association rules
	4.3.1 Support, confidence, lift, and conviction

	4.4 Apriori algorithm
	4.4.1 Python implementation
	4.4.2 Challenges with the Apriori algorithm

	4.5 Equivalence class clustering and bottom-up lattice traversal
	4.5.1 Python implementation

	4.6 F-P algorithm
	4.7 Sequence rule mining
	4.7.1 Sequential Pattern Discovery Using Equivalence

	4.8 Case study for association rules
	4.9 Concluding thoughts
	4.10 Practical next steps and suggested readings
	Summary

	5 Clustering
	5.1 Technical toolkit
	5.2 Clustering: A brief recap
	5.3 Spectral clustering
	5.3.1 Building blocks of spectral clustering
	5.3.2 The process of spectral clustering

	5.4 Python implementation of spectral clustering
	5.5 Fuzzy clustering
	5.5.1 Types of fuzzy clustering
	5.5.2 Python implementation of FCM

	5.6 Gaussian mixture model
	5.6.1 EM technique
	5.6.2 Python implementation of GMM

	5.7 Concluding thoughts
	5.8 Practical next steps and suggested readings
	Summary

	6 Dimensionality reduction
	6.1 Technical toolkit
	6.2 Multidimensional scaling
	6.2.1 Classic MDS
	6.2.2 Nonmetric MDS

	6.3 Python implementation of MDS
	6.4 t-distributed stochastic neighbor embedding
	6.4.1 Cauchy distribution
	6.4.2 Python implementation of t-SNE

	6.5 Uniform manifold approximation projection
	6.5.1 Working with UMAP
	6.5.2 Using UMAP
	6.5.3 Key points of UMAP

	6.6 Case study
	6.7 Concluding thoughts
	6.8 Practical next steps and suggested readings
	Summary

	7 Unsupervised learning for text data
	7.1 Technical toolkit
	7.2 Text data is everywhere
	7.3 Use cases of text data
	7.4 Challenges with text data
	7.5 Preprocessing the text data
	7.6 Data cleaning
	7.7 Extracting features from the text dataset
	7.8 Tokenization
	7.9 BOW approach
	7.10 Term frequency and inverse document frequency
	7.11 Language models
	7.12 Text cleaning using Python
	7.13 Word embeddings
	7.14 Word2Vec and GloVe
	7.15 Sentiment analysis case study with Python implementation
	7.16 Text clustering using Python
	7.17 GenAI for text data
	7.18 Concluding thoughts
	7.19 Practical next steps and suggested readings
	Summary

	Part 3 Advanced concepts
	8 Deep learning: The foundational concepts
	8.1 Technical toolkit
	8.1.1 Deep learning: What is it? What does it do?

	8.2 Building blocks of a neural network
	8.2.1 Neural networks for solutions
	8.2.2 Artificial neurons and perceptrons
	8.2.3 Different layers in a network
	8.2.4 Activation functions
	8.2.5 Hyperparameters
	8.2.6 Optimization functions

	8.3 How does deep learning work in a supervised manner?
	8.3.1 Supervised learning algorithms
	8.3.2 Step 1: Feed-forward propagation
	8.3.3 Step 2: Adding the loss function
	8.3.4 Step 3: Calculating the error

	8.4 Backpropagation
	8.4.1 The mathematics behind backpropagation
	8.4.2 Step 4: Optimization

	8.5 How deep learning works in an unsupervised manner
	8.6 Convolutional neural networks
	8.6.1 Key concepts of CNN
	8.6.2 Use of CNN

	8.7 Recurrent neural networks
	8.7.1 Key concepts of RNN

	8.8 Boltzmann learning rule
	8.8.1 Concepts of the Boltzmann learning rule
	8.8.2 Key points

	8.9 Deep belief networks
	8.9.1 Key points of DBN

	8.10 Popular deep learning libraries
	8.10.1 Python code for Keras and TF

	8.11 Concluding thoughts
	8.12 Practical next steps and suggested readings
	Summary

	9 Autoencoders
	9.1 Technical toolkit
	9.2 Feature learning
	9.3 Introducing autoencoders
	9.4 Components of autoencoders
	9.5 Training of autoencoders
	9.6 Application of autoencoders
	9.7 Types of autoencoders
	9.8 Python implementation of autoencoders
	9.9 Concluding thoughts
	9.10 Practical next steps and suggested readings
	Summary

	10 Generative adversarial networks, generative AI, and ChatGPT
	10.1 AI: A transformation
	10.2 GenAI and its significance
	10.3 Discriminative models and GenAI
	10.4 Generative adversarial networks
	10.4.1 The generator network
	10.4.2 The discriminator network
	10.4.3 Adversarial training
	10.4.4 Variants and applications of GANs
	10.4.5 BERT, GPT-3, and others

	10.5 ChatGPT and its details
	10.5.1 Key features of ChatGPT
	10.5.2 Applications of ChatGPT

	10.6 Integration of GenAI
	10.7 Concluding thoughts
	10.8 Practical next steps and suggested readings
	Summary

	11 End-to-end model deployment
	11.1 The machine learning modeling process
	11.2 Business problem definition
	11.3 Data discovery and feasibility analysis
	11.4 Data cleaning and prepreparation
	11.5 Duplicate values in the data
	11.6 Categorical variables
	11.7 Missing values in dataset
	11.8 Outliers present in the data
	11.9 Exploratory data analysis
	11.10 Model development and business approval
	11.11 Model deployment
	11.12 Purpose of model deployment
	11.13 Types of model deployment
	11.14 Considerations while deploying the model
	11.15 Documentation
	11.16 Model maintenance and refresh
	11.17 Concluding thoughts
	11.18 Practical next steps and suggested readings
	Summary

	appendix A Mathematical foundations
	A.1 List of clustering algorithms
	A.1.1 Partitioning-based algorithms
	A.1.2 Hierarchical clustering
	A.1.3 Density-based algorithms
	A.1.4 Grid-based algorithms
	A.1.5 Model-based algorithms
	A.1.6 Spectral clustering
	A.1.7 Graph-based clustering
	A.1.8 Subspace and high-dimensional clustering
	A.1.9 Fuzzy and soft clustering
	A.1.10 Constraint-based clustering
	A.1.11 Evolutionary and genetic clustering
	A.1.12 Neural network-based clustering
	A.1.13 Other algorithms

	A.2 What is a centroid?
	A.3 L1 vs. L2 norm
	A.4 Different scaling techniques used in the industry
	A.5 Time complexity O(n)
	A.6 How to install packages in Python
	A.7 Correlation
	A.7.1 Correlation coefficient
	A.7.2 Uses of correlation
	A.7.3 Important considerations

	A.8 Time-series analysis
	A.9 Mathematical foundation for data representation
	A.9.1 Scalar and vector
	A.9.2 Standard deviation and variance
	A.9.3 Covariance and correlation
	A.9.4 Matrix decomposition, eigenvectors, and eigenvalues
	A.9.5 Special matrices

	A.10 Hyperparameters vs. parameters

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Data Without Labels - back

